Angewandte manmone

Supporting Information

Total Synthesis of Putative Chagosensine

Marc Heinrich ${ }^{+}$, John J. Murphy ${ }^{+}$, Marina K. Ilg$^{+}$, Aurélien Letort, Jakub Flasz, Petra Philipps, and Alois Fürstner*
anie_201808937_sm_miscellaneous_information.pdf

General. All reactions were carried out under Ar in flame-dried glassware unless otherwise noted or whenever $\mathrm{H}_{2} \mathrm{O}$ was used as (co)solvent. The following solvents and organic bases were purified by distillation over the drying agents indicated and were transferred under Ar : THF, $\mathrm{Et}_{2} \mathrm{O}$ (Mg /anthracene); hexanes, toluene $(\mathrm{Na} / \mathrm{K})$; triethylamine, diisopropylamine, diisopropylethylamine, 2,6-lutidine, HMPA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, DMA, NMP (CaH_{2}); $\mathrm{MeOH}, \mathrm{EtOH}, i-\mathrm{PrOH}$ (Mg , stored over $3 \AA \mathrm{MS}$). DMF, DMSO, 1,4-dioxane, MeCN and pyridine were dried by an adsorption solvent purification system based on molecular sieves. All other commercially available compounds (ABCR, Acros, Alfa Aesar, Aldrich, Fluka, STREM, TCI) were used as received unless otherwise noted. The following compounds were prepared according to the cited protocol: $\mathrm{Me}_{2} \mathrm{BBr}^{[1]}, \mathrm{MOM}$ chloride ${ }^{[2]}, \mathrm{PPh}_{3} \mathrm{CH}_{2} \mathrm{I}_{2}^{[3]}, \mathrm{Co}(\mathrm{nmp})_{2}{ }^{[4]}$, $\mathrm{Pd}(t-\mathrm{BuNC}){ }_{2} \mathrm{Cl}_{2}{ }^{[5]}$, (S)-4-benzyl-3-(2-(benzyloxy)acetyl)oxazolidin-2-one ${ }^{[6]}$, diethyl allyl phosphate ${ }^{[7]}$, tetrabutylammonium diphenylphosphinate ${ }^{[8]}$, diazomethane ${ }^{[9]}$.

Thin layer chromatography (TLC) was performed on Macherey-Nagel precoated plates (POLYGRAM ${ }^{\circledR}$ SIL/UV254). Detection was achieved under UV light (254 nm) and by staining with either acidic p-anisaldehyde, cerium-ammonium-molybdenate or basic KMnO_{4} solution.

Flash chromatography was performed with Merck silica gel 60 (40-63 $\mu \mathrm{m}$ pore size) by predistilled or HPLC-grade solvents. In some cases, fine Merck silica gel 60 (15-40 $\mu \mathrm{m}$ pore size) was necessary as indicated in the experimental procedures.

NMR spectra were recorded on Bruker AV 400, AV 500 or AVIII 600 spectrometers in the solvents indicated. Chemical shifts (δ) are reported in ppm relative to TMS; coupling constants (J) are given in Hz . The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{C}}=77.16 \mathrm{ppm}\right.$, residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.26 \mathrm{ppm} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{C}}=53.84 \mathrm{ppm}$, residual $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{H}}=5.32 \mathrm{ppm}$; $\left[\mathrm{D}_{5}\right]$-pyridine: $\delta_{\mathrm{C}}=123.5 \mathrm{ppm}$, residual pyridine in [$\left.\mathrm{D}_{5}\right]$-pyridine: $\delta_{\mathrm{H}}=7.19 \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{OD}: \delta_{\mathrm{C}}=49.00 \mathrm{ppm}$, residual $\mathrm{CD}_{2} \mathrm{HOD}$ in $\mathrm{CD}_{3} \mathrm{OD}: \delta_{\mathrm{H}}=3.30 \mathrm{ppm}$. Multiplets are indicated by the following abbreviations: s: singlet, d : doublet, t : triplet, q : quartet, quin: quintet, sept: septet, m: multiplet. The abbreviation br indicates a broad signal. ${ }^{13} \mathrm{C}$ spectra were recorded $\left[{ }^{1} \mathrm{H}\right]$-decoupled and the values of the chemical shifts are rounded to one decimal point.

IR spectra were recorded on Alpha Platinum ATR (Bruker) at room temperature, wavenumbers (\tilde{v}) are given in cm^{-1}.

Mass spectrometric samples were measured using the following instruments: MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: Bruker ESQ3000, accurate mass determinations: Bruker APEX III FT-MS (7 T magnet) or MAT 95 (Finnigan).

Optical rotations were measured with an A-Krüss Otronic Model P8000-t polarimeter at a wavelength of 589 nm . The values are given as specific optical rotation with exact temperature, concentration (c/(10 mg/mL)) and solvent.

LC-MS analyses were conducted on a Shimadzu LC-MS 2020 instrument (pumps LC-20AD, autosampler SIL-20AC, column oven CTO-20AC, diode array detector SPD-M20A, controller CBM-20A, ESI detector and software Labsolutions) with a ZORBAX Eclipse Plus column (C18 $1.8 \mu \mathrm{~m}, 4.6 \mathrm{~mm}$ ID \times 50 mm (Agilent)) or a YMC-ODS-A C18 column (S-5 $\mu \mathrm{m}, 120 \AA, 4.6 \mathrm{~mm}$ ID $\times 150 \mathrm{~mm}$). A binary gradient of MeCN or MeOH in water was used as eluent at a flow rate of 0.8 or $1.0 \mathrm{~mL} / \mathrm{min}$. The oven temperature was kept at $35^{\circ} \mathrm{C}$ and the detection wave length at 250 nm . Conditions for each compound are specified below. Preparative LC was performed with a Shimadzu LC-20A prominence system (pumps LC-20AP, column oven CTO-20AC, diode array detector SPD-M20A, fraction collector FRC-10A, controller CBM-20A and LC-solutionsoftware); conditions for each compound are specified below.

GC-MS was measured on a Shimadzu GCMS-QP2010 Ultra instrument. Chiral GC was measured on an Agilent 7890B GC instrument with the procedure specified conditions.

Model Studies

Bis-boronate 7. A pressure Schlenk flask charged with $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}(31 \mathrm{mg}, 25 \mu \mathrm{~mol})$ and $\mathrm{B}_{2} \mathrm{pin}_{2}(0.21 \mathrm{~g}$,
 0.83 mmol) was evacuated and backfilled with Argon. A solution of compound 6a ($\mathrm{R}=\mathrm{TBS}, 0.20 \mathrm{~g}, 0.83 \mathrm{mmol}$) in degassed DMF (1 mL) was added and the resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 16 hours. The mixture was allowed to cool to room temperature, diluted with t-butyl methyl ether (20 mL) and washed with brine $(3 \times 5 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, filtered through a small pad of Celite and concentrated. The residue was used in the next step without further purification. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.95(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (ddd, J = 6.6, 5.0, 1.5 Hz, 1H), 1.56-1.41 (m, 2H), 1.39-1.16 (m, 30H), 0.89-0.83 (m, 12H), $0.02(\mathrm{~s}, 3 \mathrm{H})$, $0.00(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=83.6,83.4,78.0,37.9,32.0,26.2,25.2,25.1,25.1$, 24.9, 22.7, 18.5, 14.3, -4.1, $-4.7 \mathrm{ppm} .{ }^{11} \mathrm{~B} \operatorname{NMR}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.1 \mathrm{ppm}$. IR (film) $\tilde{v}=2977$, 2956, 2929, 2857, 1621; 1464, 1402, 1371, 1335, 1310, 1255, 1215, 1140, 969, $835 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESIpos) m / z (\%): 517.4 (100 ($\mathrm{M}+\mathrm{Na}$)). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{52} \mathrm{O}_{5} \mathrm{~B}_{2} \mathrm{SiNa}$: 517.3662, found: 517.3664.

Dienylboronate 9. $\mathrm{PdCl}_{2}(\mathrm{dppf})(3.6 \mathrm{mg}, 4.9 \mu \mathrm{~mol}), \mathrm{K}_{3} \mathrm{PO}_{4}(0.1 \mathrm{~g}, 0.5 \mathrm{mmol})$, and ethyl 3-cis-
 iodoacrylate (8) ($21 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$) were added to a solution of teh crude bis-boronate 7 ($80 \mathrm{mg}, 0.16 \mathrm{mmol}$) in THF (1 mL) and $\mathrm{H}_{2} \mathrm{O}(43 \mu \mathrm{~L}, 2.4 \mathrm{mmol})$. The mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 16 hours before it was allowed to cool to room temperature. The mixture was dried over MgSO_{4}, filtered and concentrated. The residue was purified by flash chromatography (hexane/EtOAc 9:1) to afford the title compound as a colorless oil ($52 \mathrm{mg}, 69 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.90(\mathrm{dt}, \mathrm{J}=11.7,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.25(\mathrm{t}, \mathrm{J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dd}, J=11.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{td}, J=6.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{qd}$, $J=7.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.20(\mathrm{~m}, 21 \mathrm{H}), 0.92-0.83(\mathrm{~m}, 12 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}$, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=166.4,142.8,135.9,119.0,83.6,75.9,60.0,38.4,32.0,26.1$, 25.3, 25.2, 24.7, 22.7, 18.4, 14.5, 14.2, $-4.2,-4.7 \mathrm{ppm} .{ }^{11} \mathrm{~B} \mathrm{NMR}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.1 \mathrm{ppm}$. IR (film) $\tilde{v}=2956,2929,2857,1719,1580,1464,1380,1309,1255,1181,1142,1086,1059,834,776$ cm^{-1}. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%): 489.3(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{47} \mathrm{O}_{5} \mathrm{BSiNa}$: 489.3178, found: 489.3174.

Ethyl (2Z,4Z)-6-((tert-butyldimethylsilyl)oxy)-5-chloroundeca-2,4-dienoate (10). ($\mathrm{Ph}_{3} \mathrm{P}$) AuCl (5.3 mg,
 $11 \mu \mathrm{~mol})$ was added to a suspension of dienylboronate $9(5.0 \mathrm{mg}, 11 \mu \mathrm{~mol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.5 \mathrm{mg}, 11 \mu \mathrm{~mol})$ in isopropanol $(0.5 \mathrm{~mL})$ and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 1 hour. After reaching room temperature, NCS $(7.2 \mathrm{mg}, 54$ $\mu \mathrm{mol})$ was added and stirring continued for 16 hours. The mixture was filtered through a small pad of silica, rinsing with t-butyl methyl ether. The combined filtrates were concentrated and the residue was purified by flash chromatography (hexane/EtOAc 1:0 to 50:1) to afford the title compound as a colorless oil ($3.0 \mathrm{mg}, 75 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.69(\mathrm{dt}, \mathrm{J}=$ $11.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{dd}, J=11.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (qd, J = 7.1, $1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.70-1.61 (m, 2H), 1.33-1.22 (m, 9H), 0.93-0.85 (m, 12H), 0.07 (d, J = 0.7 Hz , $3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=166.2,147.3,138.0,120.5,120.0,76.4,60.3$, 36.1, $31.8,25.9,24.8,22.7,18.3,14.4,14.2,-4.6,-4.9 \mathrm{ppm}$. IR (film) $\tilde{v}=2956,2930,2858,1718$, 1630, 1464, 1417, 1257, 1186, 1143, 1093, 1033, 836, $777 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESIpos) m / z (\%): 397.2 (100 $(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{ClSiNa}$: 397.1936, found: 397.1932.

Bis-stannane 11. A solution of 1-octin-3-ol $(6 b, R=H)(58 \mu \mathrm{~L}, 0.4 \mathrm{mmol})$ in THF (1 mL) was added to a
 solution of $\mathrm{Pd}(t-\mathrm{BuNC})_{2} \mathrm{Cl}_{2}(14 \mathrm{mg}, 40 \mu \mathrm{~mol})$ in THF (1 mL). Hexabutylditin ($0.22 \mathrm{~mL}, 0.44 \mathrm{mmol}$) was introduced in one portion and the resulting mixture stirred at ambient temperature for 7 hours. The solvent was evaporated and the residue purified by flash chromatography (hexanes $/ \mathrm{Et}_{3} \mathrm{~N} 200: 1$) to yield the title compound as a yellow oil ($239 \mathrm{mg}, 85 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.73\left(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, J_{\mathrm{SnH}}=179,66.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$,
4.05 (tdd, $J=6.5,3.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.44(\mathrm{~m}, 15 \mathrm{H}), 1.37-1.30(\mathrm{~m}, 17 \mathrm{H})$, $1.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.87(\mathrm{~m}, 12 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 9 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 9 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.0,140.3,84.0,37.3,32.0,29.5,29.3,27.8,27.6,25.7,22.8,14.2$, 13.8, 13.8, 11.3, $11.0 \mathrm{ppm} .{ }^{119} \mathrm{Sn}$ NMR ($112 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-60.5,-65.5 \mathrm{ppm}$. IR (film) : $\tilde{v}=3464$, 2955, 2921, 2871, 2854, 1463, 1376, 1340 1291, 1071, 1021, 961, 863, 826, 666, $594 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESIpos) $m / z(\%): 731.3(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{68} \mathrm{OSn}_{2} \mathrm{Na}$: 731.3205, found: 731.3212.

Dienylstannane 12. Tetrabutylammonium diphenylphosphinate ($52.1 \mathrm{mg}, 11.3 \mathrm{mmol}$) was placed in
 a Schlenk tube, which was evacuated and flame-dried. A solution of bisstannane 11 ($50.0 \mathrm{mg}, 70.8 \mu \mathrm{~mol}$) in degassed DMF (0.5 mL) was added, followed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(16.4 \mathrm{mg}, 14.2 \mu \mathrm{~mol})$. The resulting mixture was stirred at ambient temperature for 5 minutes before CuTC ($20.2 \mathrm{mg}, 106 \mu \mathrm{~mol}$) was introduced, followed by a solution of ethyl 3-cis-iodoacrylate (8) ($17.0 \mathrm{mg}, 76.3 \mu \mathrm{~mol}$) in degassed DMF (0.5 mL). The resulting mixture was stirred at ambient temperature for 1 hour before the reaction was quenched with water $(3 \mathrm{~mL})$. The aqueous layer was separated and extracted with t butyl methyl ether $(3 \times 5 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes/t-butyl methyl ether/Et ${ }_{3} \mathrm{~N}$ 95:5:0.5) to yield the title compound as a colorless oil ($21.5 \mathrm{mg}, 59 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.94\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, J_{\mathrm{SnH}}=113 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.57(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dd}, J=11.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32$ $(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.61($ brs, 1 H$), 1.52-1.44(\mathrm{~m}, 6 \mathrm{H}), 1.40-1.22(\mathrm{~m}, 18 \mathrm{H}), 1.05-$ $0.97(\mathrm{~m}, 5 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.4,144.9,134.7,130.2$, 117.9, 79.9, 60.2, 37.5, 31.9, 29.3, 27.5, 25.6, 22.8, 14.5, 1.45, 13.8, $11.8 \mathrm{ppm} .{ }^{119} \mathrm{Sn} \mathrm{NMR}(112 \mathrm{MHz}$, CDCl_{3}): $\delta=-53.6 \mathrm{ppm}$. IR (film): $\tilde{v}=3483,2956,2925,2855,1716,1613,1561,1463,1179,1027,821$, $671,596 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)$: $539.3(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{SnNa}$: 539.2517, found: 539.2522.

Ethyl (2Z,4Z)-5-chloro-6-hydroxyundeca-2,4-dienoate (13). Copper (II) chloride ($6.5 \mathrm{mg}, 49 \mu \mathrm{~mol}$)
 was added to a solution of $12(10 \mathrm{mg}, 19 \mu \mathrm{~mol})$ in THF (0.2 mL) followed by 2,6lutidine ($2.3 \mu \mathrm{~L}, 19 \mu \mathrm{~mol}$). After stirring for 72 hours at ambient temperature the reaction was diluted with t-butyl methyl ether (2 mL). The aqueous layer was separated and extracted with t-butyl methyl ether $(3 \times 2 \mathrm{~mL})$. The combined extracts were washed with sat. NaHCO_{3} and brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by flash column chromatography (hexane/t-butyl methyl ether 9:1 to $6: 1$) to afford the title compound as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.74(\mathrm{dt}, \mathrm{J}=11.0,0.8 \mathrm{~Hz}$, $1 H$), 7.01 (dd, $J=11.4,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=11.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.1$
$\mathrm{Hz}, 2 \mathrm{H}), 1.99(\mathrm{br} s, 1 \mathrm{H}), 1.78-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.28(\mathrm{~m}, 9 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=166.3,146.1,137.8,121.1,120.7,75.9,60.5,35.1,31.7,25.1,22.6,14.4$, 14.1 ppm. IR (film) $\tilde{v}=3460,2956,2928,2859,1715,1629,1464,1417,1386,1285,1186,1137$, 1029, $826 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%): 283.1(100(M+N a))$. HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{ClNa}$: 283.1071 , found: 283.1071.

Dienylboronate 16a $(X=B P i n)$ and Diene 16b $(X=H)$. A Schlenk flask was charged with $\operatorname{Pd}_{2}(\mathrm{dba})_{3}$
 $(0.7 \mathrm{mg}, 0.8 \mu \mathrm{~mol}), \mathrm{Ph}_{3} \mathrm{As}(1.0 \mathrm{mg}, 3.1 \mu \mathrm{~mol}), \mathrm{Ag}_{2} \mathrm{O}(3.6 \mathrm{mg}, 16 \mu \mathrm{~mol}, 3$ equiv.), which was then evacuated and backfilled with argon 3 times. Solutions of bis-boronate $14(5.0 \mathrm{mg}, 6.5 \mu \mathrm{~mol})$ and alkenyl iodide 15 $(2.5 \mathrm{mg}, 5.2 \mu \mathrm{~mol})$ in THF (0.25 mL) and $\mathrm{H}_{2} \mathrm{O}(5.6 \mu \mathrm{~L}, 0.3 \mathrm{mmol})$ were successively added. The mixture was stirred at $70^{\circ} \mathrm{C}$ for 1 hour, cooled to room temperature, dried over MgSO_{4} and filtered through a small pad of Celite. The filtrate was evaporated and the residue purified by flash chromatography (Hexane/EtOAc: $99 / 1$ to $50 / 1$ to $25 / 1$) to afford the title compound $\mathbf{1 6 a}$ ($X=$ BPin) as a colorless oil ($1.7 \mathrm{mg}, 32 \%$); a second fraction contained the proto-deborylated diene $\mathbf{1 6 b}$ as a colorless oil ($2.4 \mathrm{mg}, 52 \%$). Analytical and spectral data of 16a: $[\alpha]_{\mathrm{D}}^{25}=+12.2\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.01(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{ddd}, J=12.1,10.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{ddd}, \mathrm{J}=10.8,9.8,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.12(\mathrm{ddd}, J=9.9,6.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=5.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dt}, J=9.4,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.28(\mathrm{q}, J=3.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{ddd}, J=9.7,7.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=9.5$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.77 (ddd, $J=7.2,4.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.75 (dd, $J=10.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.64 (dd, $J=10.6,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=9.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{ddd}, J=7.9,5.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dq}, J=10.2,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.07 (ddd, J = 12.5, 7.3, 5.8 Hz, 1H), 1.75-1.64 (m, 2H), $1.52(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 6 \mathrm{H}), 1.26(\mathrm{~s}$, $6 \mathrm{H}), 1.27-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.87$ $(\mathrm{s}, 9 \mathrm{H}), 0.58(\mathrm{q}, \mathrm{J}=8.0 \mathrm{~Hz}, 6 \mathrm{H}) 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=138.1,134.4,130.7,128.2,109.4,85.9,83.7,83.5,81.8,80.8,77.7,75.6$, $72.7,71.9,65.1,61.5,38.3,36.9,36.5,28.0,26.1,26.1,26.0,25.7,25.4,24.7,18.5,18.5,18.4,17.8$, 7.0, 5.0, $-4.6,-4.7,-5.2,-5.2,-5.2 \mathrm{ppm}$. IR (film) $\tilde{v}=2954,2929,2881,2857,1732,1589,1462$, 1378, 1305, 1252, 1143, 1093, 1006, 837, $776 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%): 1019.6$ (100 (M+Na)). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{51} \mathrm{H}_{101} \mathrm{BO}_{10} \mathrm{Si}_{4} \mathrm{Na}$: 1019.6457, found: 1019.6457.

Analytical and spectral data of 16b: $[\alpha]_{\mathrm{D}}^{25}=+15.5$ ($\mathrm{c}=0.13, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.51(\mathrm{ddt}, J=15.0,11.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{t}, \mathrm{J}=11.1 \mathrm{~Hz}$, 1 H), 5.82 (dd, $J=15.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02$ (ddd, $J=9.7$, $6.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{q}, \mathrm{J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{td}, J=5.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{td}, \mathrm{J}$ $=7.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=7.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{ddd}, J=9.7,7.2,5.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.80(\mathrm{dd}, \mathrm{J}=9.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{td}, \mathrm{J}=6.2,5.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, \mathrm{J}=10.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (dd, J = 9.7, $5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65 (dd, $J=10.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.56 (ddd, $J=7.8,5.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.22-2.11 $(\mathrm{m}, 1 \mathrm{H}), 2.04(\mathrm{ddd}, \mathrm{J}=12.3,7.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{dt}, J=$ $11.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}$), $1.06(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}$, $9 \mathrm{H}), 0.59(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}$, $3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=136.0,131.5,126.8,125.4,109.5,85.9,84.0,81.9,80.7,77.8$, $74.6,73.0,72.3,65.1,61.7,38.2,37.1,36.9,28.1,26.1,26.1,26.0,25.8,18.5,18.4,18.4,17.9,7.0$, 5.0, $-4.4,-4.6,-5.1,-5.2,-5.2,-5.2$ ppm. IR (film) $\tilde{v}=2955,2928,2883,2856,1462,1378,1255$, 1093, 1007, 837, $777,738 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%): 888.6\left(100\left(\mathrm{M}+\mathrm{NH}_{4}\right)\right)$. HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{45} \mathrm{H}_{90} \mathrm{O}_{8} \mathrm{Si}_{4} \mathrm{Na}$: 893.5605, found: 893.5606.

Preparation of the Southern Fragment

(Z)-But-2-en-1-ol (18) Quinoline ($4.21 \mathrm{~mL}, 35.7 \mathrm{mmol}$) was added to a suspension of $\mathrm{Pd} / \mathrm{BaSO}_{4}$ OH $(10 \%, 1.90 \mathrm{~g}, 17.8 \mathrm{mmol})$ in $\mathrm{MeOH}(125 \mathrm{~mL})$ and the resulting mixture was stirred for 20 minutes at ambient temperature. 2-Butyn-1-ol (17) ($25.0 \mathrm{~g}, 357 \mathrm{mmol}$) was added and seven balloons of hydrogen were slowly bubbled through the suspension over 12 hours. The reaction progress was monitored by GC-MS and the reaction was immediately stopped by replacing the H_{2} atmosphere with Ar as soon as the starting material was fully consumed. The mixture was filtered through a pad of Celite ${ }^{\circledR}$ eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. The resulting yellow solution was carefully concentrated via distillation (Vigreux column, $400 \mathrm{mbar}, 30^{\circ} \mathrm{C}$) and the residue distilled (75 mbar , $75-80^{\circ} \mathrm{C}$) to afford the title compound as a pale yellow liquid ($16.8 \mathrm{~g}, 232 \mathrm{mmol}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.64-5.59(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=5.3 \mathrm{~Hz}$, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=129.3,127.4,58.4,13.1 \mathrm{ppm}$. IR (film): $\tilde{v}=3407,3024,2932$, 1738, 1657, 1446, 1378, 1260, 1040, 813, $696 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (\%): 72 (29), 57 (100), 54 (12), 43 (30), 41 (20), 39 (30), 31 (12), 29 (25), 27 (12). HRMS (EI): m / z calcd. for $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$: 72.0575, found: 72.0575. The analytical and spectroscopic data are in agreement with those reported in the literature. ${ }^{[10]}$
((2S,3R)-3-Methyloxiran-2-yl)methanol (S1). A 500 mL jacketed Schlenk flask was charged with
 activated powdered $4 \AA \mathrm{MS}(14 \mathrm{~g})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ and the resulting suspension was cooled to $-20^{\circ} \mathrm{C}$. (+)-Diethyl L-tartrate $(2.45 \mathrm{~g}, 11.9 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(2.94 \mathrm{~mL}$, 9.92 mmol) were added, followed by allylic alcohol 18 ($14.3 \mathrm{~g}, 198 \mathrm{mmol}$). The mixture was stirred for 45 minutes at the same temperature before t - BuOOH (5.5 M in decane, $54 \mathrm{~mL}, 0.30 \mathrm{~mol}$) was added via a dropping funnel over 60 minutes. Stirring was continued for 40 hours at $-20^{\circ} \mathrm{C}$. For work up, the septum was removed, dimethyl sulfide ($21.8 \mathrm{~mL}, 297 \mathrm{mmol}$) was added and the resulting mixture stirred open to the atmosphere at ambient temperature for 24 hours. The mixture was then
filtered through a pad of Celite ${ }^{\circledR}$ which was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (300 mL). The combined filtrates were evaporated and the residue was purified by flash chromatography (pentane/ $\mathrm{Et}_{2} \mathrm{O} 4: 1$) followed by distillation (12 mbar, $59-64^{\circ} \mathrm{C}$) to yield the title compound as a colourless oil ($12.9 \mathrm{~g}, 74 \%, 90 \%$ ee). $[\alpha]_{\mathrm{D}}^{20}=-4.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.85(\mathrm{dq}, J=11.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (ddd, $J=11.6,6.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{brs}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=60.8,56.9,53.0,13.5 \mathrm{ppm}$. IR (film): $\tilde{v}=3397,2930,1451,1040,986,877,829,783$, $731 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) $\mathrm{m} / \mathrm{z}(\%): 45$ (100), 44 (43), 43 (48), 31 (32), 29 (26), 27 (16). HRMS (ESIpos): m / z calcd.. for $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{Na}$: 111.0416, found: 111.0416. The ee was determined by GC ($30 \mathrm{~m}, \mathrm{BGB}-176 / \mathrm{BGB}-$ $15 \mathrm{G} / 618,801 / \mathrm{min} 1208 / \mathrm{min} 2203 / \mathrm{min}$ iso, flow rate 0.50 bar H_{2} : minor enantiomer $\mathrm{t}_{\mathrm{R}}=10.7 \mathrm{~min}$, major enantiomer $\left.t_{R}=11.1 \mathrm{~min}\right)$. The analytical and spectroscopic data are in agreement with those reported in the literature. ${ }^{[11]}$

\boldsymbol{t}-Dimethyl(($2 S, 3 R)$-3-methyloxiran-2-yl)methoxy)silane (19). Imidazole (12.9 g, 190 mmol$)$,
 4-(dimethylamino)pyridine ($892 \mathrm{mg}, 7.30 \mathrm{mmol}$) and tert-butyldimethylsilyl chloride $(26.5 \mathrm{~g}, 176 \mathrm{mmol})$ were added to a solution of epoxy alcohol $\mathbf{S 1}(12.9 \mathrm{~g}, 146 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(280 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at ambient temperature for 3.5 hours. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$ and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 200 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (pentane/ $\mathrm{Et}_{2} \mathrm{O} 99: 1$) to yield the title compound as a colourless oil (28.4 g, 96\%). $[\alpha]_{\mathrm{D}}^{20}=+7.1$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=3.76(\mathrm{~d}, \mathrm{~J}=11.5,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.67(\mathrm{ddd}, J=11.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{qd}, J=5.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dt}, J=6.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~d}$, $J=5.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.082(\mathrm{~s}, 3 \mathrm{H}), 0.076(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=61.9$, 57.1, 52.4, 25.9, 18.5, 13.5, $-5.2,-5.3$ ppm. IR (film): $\tilde{v}=2955,2930,2857,1472,1391,1361,1254$, 1091, 1006, 975, 939, 886, 834, 775, $666 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m/z (\%): 145 (46), 116 (11), 115 (100), 101 (65), 85 (25), 75 (38), 73 (20), 59 (30). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{SiNa}$: 225.1281, found: 225.1281.
(2R,3R)-1-((t-Butyldimethylsilyl)oxy)-3-methylhex-5-en-2-ol (20). A solution of allylmagesnium

chloride (2 M in THF, $22.2 \mathrm{~mL}, 44.5 \mathrm{mmol}$) was added to a suspension of copper (I) iodide ($847 \mathrm{mg}, 4.45 \mathrm{mmol}$) in THF (70 mL) at $-25^{\circ} \mathrm{C}$. The resulting mixture was stirred for 10 minutes, before a solution of compound 19 (6.00 g , 29.6 mmol) in THF (20 mL) was added dropwise over 30 minutes. The resulting mixture was stirred at $-25^{\circ} \mathrm{C}$ for 6 hours. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and the aqueous layer extracted with t-butyl methyl ether $(3 \times 50 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexane/t-butyl methyl ether $300: 1$) to afford the title compound as a pale yellow oil ($5.57 \mathrm{~g}, 77 \%$, r.r. $10: 1$) and its regioisomer S2 as a colourless oil (310 mg, 4\%). $[\alpha]_{\mathrm{D}}^{20}=-13.4$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=5.80(\mathrm{dddd}, J=16.8,10.1,7.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{dd}, J=9.6,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.48 (dd, J = 9.6, 7.7 Hz, 1H), 3.41 (td, J = 7.4, 3.0 Hz, 1H), 2.54 (brs, 1H), 2.43-2.34 (m, 1H), 1.95 (dddt, $J=13.9,8.9,7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.66$ (dddd, $J=12.9,11.0,5.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.85$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.3,116.2,75.2,65.2,37.3,35.7$, 26.0, 18.4, 15.2, -5.2, -5.3 ppm. IR (film): $\tilde{v}=3484,2955,2929,2858,1463,1362,1254,1093,993$, 911, 835, 777, $670 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (\%): 187 (15), 145 (13), 105 (57), 95 (100), 89 (13), 75 (82), 73 (25), 67 (11). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SiNa}$: 267.1751, found: 267.1751 .

Spectral and analytical data of the regioisomer S2: $[\alpha]_{\mathrm{D}}^{20}=+2.1\left(\mathrm{c}=0.7, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$,
 CDCl_{3}): $\delta=5.77(\mathrm{ddt}, \mathrm{J}=17.0,10.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{qd}, \mathrm{J}=6.5$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=10.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.06$ $(\mathrm{m}, 2 \mathrm{H}), 1.69(\mathrm{dddd}, J=10.2,8.7,4.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, 0.07 (s, 3H), 0.07 (s, 3H) ppm. ${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=137.3,116.4,70.8$, 65.1, 44.9, 30.1, 26.0, 19.5, 18.2, $-5.5,-5.5 \mathrm{ppm}$. IR (film): $\tilde{v}=3443,2956,2929,2858,1472,1362$, 1254, 1094, 992, 911, 836, 776, $670 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (\%): 105 (63), 95 (34), 75 (100), 73 (16). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SiNa}$: 267.1751, found: 267.1749 .
((2R,4R,5R)-5-(((t-butyldimethylsilyl)oxy)methyl)-4-methyltetrahydrofuran-2-yl)methanol (21). A

solution of alcohol $20(4.00 \mathrm{~g}, 16.4 \mathrm{mmol})$ in $i-\mathrm{PrOH}(10 \mathrm{~mL})$ was added to a solution of $\mathrm{Co}(\mathrm{nmp})_{2}(925 \mathrm{mg}, 1.64 \mathrm{mmol})$ in $i-\mathrm{PrOH}(90 \mathrm{~mL})$. The pale red solution was purged with O_{2} for 15 minutes before t - $\mathrm{BuOOH}(0.29 \mathrm{~mL}$, 1.64 mmol) was added in one portion. The reaction mixture was stirred at $55^{\circ} \mathrm{C}$ under oxygen atmosphere (balloon) for 5 hours, during which time the solution turned green. After cooling to ambient temperature, the solvent was evaporated. The residue was partitioned between sat. $\mathrm{NH}_{4} \mathrm{Cl}$ $(50 \mathrm{~mL})$ and t-butyl methyl ether (50 mL) and the aqueous layer extracted with t-butyl methyl ether $(2 \times 80 \mathrm{~mL})$. The combined extracts were washed with water $(3 \times 50 \mathrm{~mL})$ and brine (50 mL), dried
over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes/t-butyl methyl ether $25: 1$ to $20: 1$) to yield the title compound as a pale yellow oil (3.36 g , $79 \%) \cdot[\alpha]_{\mathrm{D}}^{20}=-16.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.08(\mathrm{dtd}, J=9.8,5.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-5), 3.69$ (ddd, $J=11.6,6.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.69(\mathrm{AB}, J=11.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.66(\mathrm{AB}, \mathrm{J}=11.0$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), $3.53(\mathrm{dt}, J=8.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.49(\mathrm{dt}, J=11.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 2.15(\mathrm{dddq}, J=$ $10.8,8.2,7.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 2.06$ (ddd, $J=12.0,7.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 1.95(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{OH}$), 1.41 (ddd, $J=11.9,10.5,9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 1.07(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-23), 0.90(\mathrm{~s}, 9 \mathrm{H}, \mathrm{TBS}), 0.07(\mathrm{~s}, 6 \mathrm{H}$, TBS) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=86.2$ (C2), 79.3 (C5), 65.1 (C6), 65.0 (C1), 36.8 (C4), 36.5 (C3), 26.1 (3C, TBS), 18.6 (TBS), 17.5 (C23), -5.1 (TBS), -5.2 ppm (TBS). IR (film): $\tilde{v}=3432,2955,2929$, 2857, 1729, 1462, 1388, 1361, 1253, 1128, 1085, 1054, 1005, 906, 834, 775, 729, $649 \mathrm{~cm}^{-1}$. MS (EI) $m / z(\%): 229(15), 203$ (49), 185 (29), 117 (28), 115 (17), 111 (12), 105 (28), 103 (10), 101 (11), 93 (33), 89 (10), 83 (12), 81 (22), 75 (100), 73 (48), 69 (21), 59 (17), 57 (21), 55 (22), 43 (12), 41 (18). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{SiNa}$ 283.1700, found: 283.1700.

(2R,4R,5R)-5-(((t-butyldimethylsilyl)oxy)methyl)-4-methyltetrahydrofuran-2-carbaldehyde (S3).

Hünig base ($11.0 \mathrm{~mL}, 63.4 \mathrm{mmol}$) was added to a solution of alcohol 21 (3.28 g , $12.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(110 \mathrm{~mL})$ at $-25^{\circ} \mathrm{C}$. In a second flask, a suspension of sulfur trioxide pyridine complex ($5.04 \mathrm{~g}, 31.7 \mathrm{mmol}$) in DMSO ($9.00 \mathrm{~mL}, 126 \mathrm{mmol}$) was stirred for 10 minutes at ambient temperature before it was added to the alcohol solution at $-25^{\circ} \mathrm{C}$ (rinsing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$). The resulting mixture was stirred for 30 minutes at $-25^{\circ} \mathrm{C}$. The mixture was poured into pH 7 phosphate buffer (50 mL) and t-butyl methyl ether (50 mL) and the aqueous layer was extracted with t-butyl methyl ether $(3 \times 100 \mathrm{~mL})$. The combined extracts were washed with pH 7 phosphate buffer (100 mL) and brine (100 mL) before they were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under high vacuum to yield the crude aldehyde as a yellow oil, which was used in the next step without further purification. For analytical purposes an aliquot was purified by flash chromatography (hexane/t-butyl methyl ether $9: 1$): $[\alpha]_{\mathrm{D}}^{20}=+3.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=9.66(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{ddd}, J=8.8,7.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=$ $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=7.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dt}, J=12.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dtd}, J=14.2,7.4,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.58(\mathrm{dt}, J=12.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=203.1,87.8,82.8,64.3,36.5,35.4,26.1$ (3C), 18.5, 17.3, -5.19 , -5.25 ppm . IR (film): $\tilde{v}=2956,2929,2857,1734,1462,1388,1361,1254,1130,1087,1058,1004$, 939, 834, 776, $671 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (\%): 229 (25), 201 (34), 185 (13), 145 (12), 143 (11), 129 (13), 117 (11), 115 (18), 105 (11), 103 (19), 101 (20), 89 (13), 75 (100), 73 (72), 59 (23), 57 (12), 55 (12), 41 (14). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{SiNa}$: 281.1543, found: 281.1545 . acrylate (22). 18-Crown-6 ($7.37 \mathrm{~g}, 27.9 \mathrm{mmol}$) was added to a solution of KHMDS ($3.03 \mathrm{~g}, 15.2 \mathrm{mmol}$) in THF $(60 \mathrm{~mL})$. After cooling to $-78{ }^{\circ} \mathrm{C}$, methyl O,O'-bis(2,2,2trifluoroethyl)phosphonoacetate ($3.22 \mathrm{~mL}, 15.2 \mathrm{mmol}$) was added dropwise and the resulting mixture was stirred for 20 minutes. Next, a solution of aldehyde $\mathbf{S 3}(3.27 \mathrm{~g}, 12.7 \mathrm{mmol})$ in THF (15 mL) was added dropwise over 10 minutes. The resulting mixture was stirred for 3 hours at $-78^{\circ} \mathrm{C}$ before it was poured into sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(70 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc $(3 \times 70 \mathrm{~mL})$, the combined extracts were washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified twice by flash chromatography (fine SiO_{2}, hexane/t-butyl methyl ether 99:1) to yield the title compound (Z)-22 as a pale yellow oil (2.50 g , 63% over two steps, Z / E 12:1); additional fractions contained the undesired (E)-22 (190 mg, 5\% over two steps) and traces of the β / γ-unsaturated ester $\mathbf{S 4}(79 \mathrm{mg}, \mathbf{2 \%}$ over two steps).
Analytical and spectral data of $(Z)-22:[\alpha]_{\mathrm{D}}^{20}=+40.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 6.33 (dd, $J=11.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.75$ (dd, $J=11.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.37 (dddd, $J=9.8,7.4,5.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.61$ (ddd, J = 8.2, 5.0, 4.1 Hz, 1H), 2.48 (ddd, J = 12.4, 7.0, 5.9 Hz, 1H), 2.24-2.13 (m, 1H), 1.30 (ddd, J = 12.1, 10.6, $9.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.07 (d, J = $6.6 \mathrm{~Hz}, 3 \mathrm{H}$), $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06$ (s, $6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.4,152.3,118.5,86.5,75.8,65.0,51.5,41.4,36.7,26.1$, 18.6, 17.5, $-5.16,-5.17 \mathrm{ppm}$. IR (film): $\tilde{v}=2954,2929,2857,1724,1648,1462,1438,1404,1254$, 1198, 1180, 1083, 1038, 1005, 837, 777, $674 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (\%): 258 (18), 257 (100), 227 (16), 225 (30), 197 (28), 169 (15), 165 (13), 139 (28), 137 (15), 133 (39), 121 (35), 117 (58), 111 (35), 107 (20), 105 (33), 89 (23), 81 (11), 79 (18), 75 (45), 73 (37), 59 (13). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{SiNa}$: 337.1806, found: 337.1806.
Analytical and spectral data of $(E)-22:[\alpha]_{\mathrm{D}}^{20}=+17.3\left(\mathrm{c}=0.93, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

$\delta=6.94(\mathrm{dd}, J=15.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=15.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.54$ (dddd, $J=9.9,6.0,5.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.68 (d, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60$ (dd, $J=8.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.30 (ddd, $J=11.5$, $7.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{ddq}, J=10.4,8.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{dt}, J=11.6,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.2,149.0,119.5$, 86.5, $77.7,64.6,51.7,41.7,36.5,26.1$ (3C), 18.5, 17.4, $-5.15,-5.19 \mathrm{ppm}$. IR (film): $\tilde{v}=2955,2930$, 2857, 1728, 1662, 1462, 1436, 1361, 1300, 1258, 1166, 1125, 1089, 1006, 837, 777, $675 \mathrm{~cm}^{-1}$. MS (ESIpos) m / z (\%): 337.2 (100 ($\mathrm{M}+\mathrm{Na}$)). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{SiNa}$: 337.1806, found: 337.1807.

Diol S5. Potassium hexacyanoferrate ($5.61 \mathrm{~g}, 17.0 \mathrm{mmol}$), potassium carbonate ($2.36 \mathrm{~g}, 17.0 \mathrm{mmol}$),

potassium osmate (VI) dihydrate ($126 \mathrm{mg}, 0.341 \mathrm{mmol}$), (DHQD) ${ }_{2} \mathrm{PYR}$ ($150 \mathrm{mg}, 0.171 \mathrm{mmol}$) and methanesulfonamide ($540 \mathrm{mg}, 5.68 \mathrm{mmol}$) were sequentially added to a mixture of alkene Z-22 ($1.79 \mathrm{~g}, 5.68 \mathrm{mmol}$) in $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1,100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 72 hours before it was poured into a solution of sat. $\mathrm{NH}_{4} \mathrm{Cl}$, sat. $\mathrm{NaS}_{2} \mathrm{O}_{3}$ and water (1:1:2, 100 mL). The mixture was vigorously stirred for 10 minutes at ambient temperature, diluted with EtOAc. The aqueous layer was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$), and the combined extracts were washed with brine (200 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified twice by flash chromatography (fine SiO_{2}, hexane/EtOAc $19: 1$ to $8: 1$) to yield the desired diol ($1.33 \mathrm{~g}, 67 \%, \mathrm{dr} 5: 1$) and the undesired diastereoisomer $\mathbf{S 6}$ ($215 \mathrm{mg}, 11 \%$) as colourless oil each.

Analytical and spectral data of the major diastereoisomer S5: $[\alpha]_{\mathrm{D}}^{20}=-8.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.29$ (dd, $J=9.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 4.05 (ddd, $J=10.0,5.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-9$), 3.74 (ddd, $J=8.4,4.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.67 (dd, $J=10.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 3.62 (dd, $J=$ $10.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 3.54 (ddd, $J=8.6,4.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $3.39(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{OH}$), 2.75 (d, J $=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{OH}$), 2.12 (ddqd, $J=10.6,8.6,6.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 2.07 (ddd, $J=11.8,6.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-4), 1.64(\mathrm{dt}, J=11.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 1.07$ (d, J=6.4 Hz, 3H, H-23), 0.89 (s, 9H, TBS), 0.06 (s, 6H, TBS) ppm. ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=172.9$ (C8), 87.0 (C2), 78.7 (C5), 73.7 (C7), 73.4 (C6), 64.6 (C1), 52.5 (C9), 37.4 (C4), 36.0 (C3), 26.0 (3C, TBS), 18.5 (TBS), 17.0 (C23), -5.19 (TBS), -5.23 ppm (TBS). IR (film): $\tilde{v}=3458,2954,2929,2857,1740,1461,1440,1388,1253,1128,1080,1004,836$, 777, $647 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (\%): 292 (14), 291 (77), 259 (25), 155 (11), 231 (39), 230 (15), 229 (82), 213 (11), 186 (12), 185 (80), 181 (17), 171 (24), 167 (11), 157 (12), 153 (11), 149 (15), 145 (13), 143 (14), 139 (27), 129 (11), 127 (13), 126 (12), 121 (19), 117 (48), 115 (66), 113 (11), 109 (23), 107 (11), 105 (24), 103 (12), 101 (14), 97 (19), 93 (23), 89 (22), 85 (12), 81 (23), 75 (88), 73 (100), 69 (12), 59 (16), 55 (14), 43 (12), 41 (11). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{SiNa}$: 371.1860, found: 371.1863.

Analytical and spectral data of the minor diastereoisomer S6: $[\alpha]_{\mathrm{D}}^{20}=-17.6$ ($\mathrm{c}=1.4, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H} \mathrm{NMR}$

$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.32(\mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 4.03$ (ddd, $J=9.2,7.4$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-9), 3.81$ (ddd, J = 9.2, 7.4, 6.0 Hz, 1H, H-6), 3.64 (dd, $J=11.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), $3.60(\mathrm{dd}, J=11.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), $3.48(\mathrm{dt}, J=8.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.31(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{OH}), 2.53(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{OH}), 2.28$ (ddd, $J=12.4,6.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 2.10$ (dddq, $J=10.8,8.5,7.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 1.55 (ddd, $J=12.4$, $10.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 1.07(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-23), 0.89(\mathrm{~s}, 9 \mathrm{H}, \mathrm{TBS}), 0.05(\mathrm{~s}, 6 \mathrm{H}, \mathrm{TBS}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl ${ }_{3}$): $\delta=173.2$ (C8), 86.6 (C2), 78.4 (C5), 75.2 (C6), 72.7 (C7), 64.8 (C1), 52.7 (C9), 38.4 (C4), 36.2 (C3), 26.1 (3C, TBS), 18.5 (TBS), 17.3 (C23), -5.19 (TBS), -5.21 ppm (TBS). IR (film): $\tilde{v}=3439$,

2954, 2929, 2857, 1741, 1462, 1388, 1254, 1129, 1087, 1004, 837, 777, $671 \mathrm{~cm}^{-1}$. MS (ESIpos) m / z (\%): 371.2 (100 (M+Na)). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{SiNa}$: 371.1860, found: 371.1858.

Acetonide 23. p-Toluenesulfonic acid monohydrate ($50.5 \mathrm{mg}, 0.27 \mathrm{mmol}$) was added to a solution of
 diol S5 ($2.00 \mathrm{~g}, 5.74 \mathrm{mmol}$) in 2,2-dimethoxypropane (60 mL). The resulting mixture was stirred at ambient temperature for 4 hours. After quenching with sat. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, the layers were separated and the aqueous phase was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexane/EtOAc 20:1) to afford the title compound as a colourless oil $(1.98 \mathrm{~g}, 89 \%) \cdot[\alpha]_{\mathrm{D}}^{20}=+10.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.55(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ (ddd, $J=9.4,6.7,5.7 \mathrm{~Hz}$, 1 H), 3.73 ($\mathrm{s}, 3 \mathrm{H}$), $3.71(\mathrm{dd}, J=10.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.63(\mathrm{dd}, J=10.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{ddd}, J=7.3,5.2$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.46-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.9,111.5,85.9,81.3,76.8,75.7$, $64.7,52.3,38.1,36.8,26.9,26.0,25.8,18.4,17.8,-5.2,-5.3 \mathrm{ppm}$. IR (film): $\tilde{v}=2954,2930,2858$, $1765,1734,1461,1380,1253,1202,1166,1091,1005,871,838,777 \mathrm{~cm}^{-1}$. MS (EI) $\mathrm{m} / \mathrm{z}(\%): 331$ (25), 241 (19), 230 (11), 229 (57), 185 (39), 171 (10), 159 (16), 157 (14), 139 (51), 117 (95), 115 (14), 107 (12), 101 (10), 89 (22), 75 (54), 73 (100), 59 (24), 55 (10), 43 (26), 41 (12), 40 (42). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{SiNa}$: 411.2173, found: 411.2174.

Alcohol S7. A solution of lithium aluminium hydride (1 M in THF, $2.83 \mathrm{~mL}, 2.83 \mathrm{mmol}$) was added to a
 solution of ester $\mathbf{2 3}(550 \mathrm{mg}, 1.42 \mathrm{mmol})$ in THF $(14 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at ambient temperature for 1 hour. The reaction was cooled to $0^{\circ} \mathrm{C}$ and carefully quenched with MeOH until gas evolution ceased. The mixture was poured via cannula into sat. Rochelle salt (15 mL), rinsing the flask with t-butyl methyl ether (5 mL). The resulting emulsion was vigorously stirred for 16 hours at ambient temperature. The layers were separated and the aqueous layer was extracted with t-butyl methyl ether ($3 \times 20 \mathrm{~mL}$). The combined extracts were washed with brine $(25 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexane/t-butyl methyl ether 19:1) to afford the title compound as a colourless oil ($487 \mathrm{mg}, 95 \%$). $[\alpha]_{\mathrm{D}}^{20}=+2.8$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.19-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{dd}, \mathrm{J}=6.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.59(\mathrm{~m}, 5 \mathrm{H})$, $3.12(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{ddd}, \mathrm{J}=14.0,13.8,9.7 \mathrm{~Hz}, 1 \mathrm{H}) 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}$, $3 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=108.7,86.5$, $78.9,77.5,76.0,64.4,61.6,38.3,36.0,27.6,26.0,25.8,18.4,17.1,-5.3,-5.3 \mathrm{ppm}$. IR (film): $\tilde{v}=3475$, 2955, 2930, 2857, 1462, 1378, 1251, 1216, 1168, 1124, 1078, 1040, 1005, $836,777,668 \mathrm{~cm}^{-1}$. MS (EI) $m / z(\%): 303$ (28), 245 (30), 229 (43), 227 (35), 185 (38), 157 (18), 153 (18), 145 (21), 135 (57), 131
(17), 117 (47), 115 (15), 109 (20), 107 (13), 105 (29), 101 (15), 97 (16), 95 (19), 93 (15), 89 (18), 85 (14), 81 (28), 75 (98), 73 (100), 59 (73), 57 (22), 55 (24), 43 (52), 41 (25). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{SiNa}$: 383.2224, found: 383.2226 .

Aldehyde S8. Hünig base ($1.40 \mathrm{~mL}, 8.03 \mathrm{mmol}$) was added to a solution of alcohol $\mathbf{S 7}$ (579 mg ,
 1.61 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at $-25^{\circ} \mathrm{C}$. In a second flask, a suspension of sulfur trioxide pyridine complex ($639 \mathrm{mg}, 4.01 \mathrm{mmol}$) in DMSO (1.15 mL , 16.1 mmol) was stirred for 10 minutes at ambient temperature before it was added to the alcohol solution at $-25^{\circ} \mathrm{C}$, rinsing the flask with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The resulting mixture was stirred at $-25^{\circ} \mathrm{C}$ for 45 minutes. The mixture was poured into pH 7 phosphate buffer (15 mL) and t butyl methyl ether (15 mL), the layers were separated and the aqueous layer was extracted with t butyl methyl ether ($3 \times 20 \mathrm{~mL}$). The combined extracts were washed with pH 7 phosphate buffer $(20 \mathrm{~mL})$ and brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum to yield the crude aldehyde as a pale yellow oil, which was pure by NMR spectroscopy and used without further treatment. $[\alpha]_{\mathrm{D}}^{20}=-30.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.66-9.59(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.29$ $(\mathrm{m}, 2 \mathrm{H}), 4.01(\mathrm{dtd}, \mathrm{J}=8.0,3.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{dt}, \mathrm{J}=8.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.06$ $(\mathrm{m}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{ddd}, \mathrm{J}=14.8,5.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}$, $9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.6,111.3,86.7,81.6,81.3,75.6$, 64.6, 37.0, 36.7, 27.1, 26.0, 25.5, 18.4, 17.1, -5.3 ppm (2C). IR (film): $\tilde{v}=2956,2930,2857,1732$, 1461, 1381, 1361, 1252, 1214, 1164, 1075, 1004, 835, 776, $667 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (\%): 301 (59), 243 (24), 230 (18), 229 (100), 213 (15), 201 (38), 185 (57), 183 (27), 171 (38), 157 (29), 145 (15), 143 (16), 129 (22), 117 (40), 115 (15), 113 (18), 105 (17), 103 (20), 101 (22), 75 (59), 73 (63), 59 (18), 43 (15). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{SiNa}$: 381.2068, found: 381.2068.
(Z)-Vinyl iodide 24. lodomethyltriphenylphosphonium iodide ($1.82 \mathrm{~g}, 4.17 \mathrm{mmol}$) was added in
 portions to a solution of sodium bis(trimethylsilyl)amide (753 mg , 4.11 mmol) in THF (25 mL). The resulting yellow mixture was stirred at ambient temperature for 30 minutes before it was cooled to $-78^{\circ} \mathrm{C}$. HMPA ($1.40 \mathrm{~mL}, 8.02 \mathrm{mmol}$) was added, followed by a solution of aldehyde $\mathbf{S 8}(575 \mathrm{mg}, 1.60 \mathrm{mmol})$ in THF $(6 \mathrm{~mL})$. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 4 hours. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ $(15 \mathrm{~mL})$ and the aqueous layer was extracted with t-butyl methyl ether ($3 \times 20 \mathrm{~mL}$). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexane/t-butyl methyl ether $70: 1$ to $40: 1$) to afford the title compound as a colourless oil ($517 \mathrm{mg}, 67 \%$ two steps, $Z / E>20: 1$). $[\alpha]_{\mathrm{D}}^{20}=-53.2$ (c $=0.875, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.47(\mathrm{dd}, J=7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=8.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{ddd}, \mathrm{J}=8.6$, $6.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dt}, J=9.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=10.6,3.9 \mathrm{~Hz}, 1 \mathrm{H})$,
3.65 (dd, $J=10.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.56 (ddd, $J=8.9,5.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.18(\mathrm{ddq}, J=13.9,10.1,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.07 (ddd, J = 13.0, 7.2, $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), $1.50(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{dt}, J=11.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{~d}$, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.6,110.0,86.0,85.6$, 81.1, $79.8,77.2,64.9,38.1,36.7,27.8,26.0,25.8,18.4,17.8,-5.2,-5.2 \mathrm{ppm}$. IR (film) : $\tilde{v}=2955,2929$, 2857, 1461, 1378, 1252, 1214, 1164, 1125, 1085, 1059, 999, 837, 777, $677 \mathrm{~cm}^{-1}$. MS (EI) $\mathrm{m} / \mathrm{z}(\%): 483$ (11), 482 (24), 467 (12), 426 (19), 425 (87), 367 (22), 337 (12), 293 (11), 243 (21), 230 (19), 229 (100), 186 (12), 185 (61), 171 (28), 157 (34), 149 (17), 117 (18), 93 (11), 75 (31), 73 (43). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{O}_{4}$ ISiNa: 505.1242, found: 505.1244 .

Alcohol S9. Pyridine ($5.5 \mathrm{ml}, 68 \mathrm{mmol}$), and HF-pyridine ($0.70 \mathrm{ml}, 7.8 \mathrm{mmol}$) were successively added
 to a solution of compound 24 ($241 \mathrm{mg}, 0.500 \mathrm{mmol}$) in THF (12 mL) in a Teflon ${ }^{\circledR}$ vial. The resulting mixture was stirred at ambient temperature for 16 hours. The mixture was diluted with EtOAc (10 mL) and the reaction carefully quenched with sat. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with a 1:3 mixture of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and brine (50 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexane/EtOAc $4: 1$ to $2: 1$) to afford the title compound as a colourless oil (220 mg, 99\%). $[\alpha]_{\mathrm{D}}^{20}=-50.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.50(\mathrm{dd}, \mathrm{J}=7.7,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.34(\mathrm{dd}, J=8.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.82$ (ddd, $J=8.6,6.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ (ddd, $J=9.7,7.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=11.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.58$ (ddd, $J=8.9,3.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.50 (dd, $J=11.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{brs}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$, $1.42-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.05 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=137.3,110.1,86.3$, 85.8, 81.2, 79.7, 77.3, 62.4, 37.9, 34.7, 27.9, 25.7, 16.3 ppm. IR (film): $\tilde{v}=3442,2983,2957,2930$, $2872,1455,1372,1249,1251,1160,1088,1053,926,866,816 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESIpos) $\mathrm{m} / \mathrm{z}(\%): 391.0$ (100 ($\mathrm{M}+\mathrm{Na}$)). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{INa}$: 391.0377, found: 391.0375.

Carboxylic Acid S10. Water ($0.09 \mathrm{~mL}, 5 \mathrm{mmol}$), (diacetoxyiodo)benzene ($348 \mathrm{mg}, 1.08 \mathrm{mmol}$) and
 TEMPO ($23 \mathrm{mg}, 0.15 \mathrm{mmol}$) were successively added to a solution of alcohol $\mathbf{S 9}$ $(180 \mathrm{mg}, 0.489 \mathrm{mmol})$ in MeCN $(2.4 \mathrm{~mL})$. The pale orange solution was stirred for 19 hours at ambient temperature. The reaction was quenched with aqueous $\mathrm{NaOH}(5 \% \mathrm{w} / \mathrm{w}, 100 \mathrm{~mL})$ and the aqueous layer washed with t-butyl methyl ether ($2 \times 50 \mathrm{~mL}$). The aqueous solution was acidified with $\mathrm{HCl}(2 \mathrm{M})$ until pH 3 was reached; pH 3.5 phosphate buffer solution (50 mL) was added and the aqueous phase was extracted with EtOAc ($2 \times 200 \mathrm{~mL}$). The combined organic layers were washed with a $1: 1$ mixture of pH 5 phosphate buffer and brine (200 mL). After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtration, the residue was concentrated under reduced pressure. The yellow residual oil (183 mg , 98%) was used without further purification. $[\alpha]_{\mathrm{D}}^{20}=-64,5$
$\left(\mathrm{c}=1.04, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.54(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.88 (ddd, $J=7.8,6.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=6.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dt}, J=9.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{ddp}, J=10.5,8.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{ddd}, J=12.7,7.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.47(\mathrm{~m}$, 4 H), 1.42 ($\mathrm{s}, 3 \mathrm{H}$), 1.27 ($\mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.9,137.6,110.1$, 85.8, $83.1,79.9,79.7,79.1,39.8,37.5,27.6,25.6,17.6 \mathrm{ppm}$. IR (film) $\tilde{v}=3461,3070,2982,2933$, 1733, 1380, 1274, 1248, 1216, 1162, 1055, $866 \mathrm{~cm}^{-1} . \mathrm{MS}($ EI) $\mathrm{m} / \mathrm{z}(\%): 367$ (21), 253 (13), 224 (100), 195 (68), 129 (36), 97 (43), 83 (25), 43 (22). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{5}$ INa: 405.0169, found: 405.0173.

Ester 25. DMAP ($36.5 \mathrm{mg}, \quad 0.299 \mathrm{mmol}$), N -(3-dimethylaminopropyl)-N'-ethylcarbodiimide
 hydrochloride ($411 \mathrm{mg}, 2.14 \mathrm{mmol}$) and 2-(trimethylsilyl)-ethanol ($0.56 \mathrm{~mL}, 3.9 \mathrm{mmol}$) were added to a solution of carboxylic acid S10 ($600 \mathrm{mg}, 1.49 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.5 \mathrm{~mL})$. After stirring for 4 hours at ambient temperature, the mixture was diluted with EtOAc (10 mL) and the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous phase was separated and extracted with EtOAc $(3 \times$ 10 mL). The combined organic layers were washed with brine (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexane/t-butyl methyl ether 96:4 to 94:6 to 92:8) to yield the title compound as a colourless oil ($512 \mathrm{mg}, 71 \%$). $[\alpha]_{\mathrm{D}}^{20}=-56.3$ (c = 1.57, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.51(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dd}, J=7.9$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.09(\mathrm{~m}, 4 \mathrm{H}), 4.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{ddq}, J=12.0,9.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ (ddd, $J=12.0,7.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.45-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.20(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.02-0.97(\mathrm{~m}, 2 \mathrm{H})$, 0.04 (s, 9H) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.1,137.6,110.1,85.7,83.9,80.0,79.9,78.9$, 63.2, 39.6, 37.2, 27.6, 25.7, 18.3, 17.5, -1.4 ppm. IR (film) $\tilde{v}=2956,2897,1748,1731,1456,1371$, 1274, 1250, 1215, 1175, 1131, 1086, 1059, 860, $838 \mathrm{~cm}^{-1}$. MS (EI) m / z (\%): 467 (13), 279 (21), 224 (100), 195 (41), 173 (61), 97 (41), 73 (90). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{5}$ ISiNa: 505.0877, found: 505.0878.

Preparation of the Northern Fragment

(S)-2-(2,6-Dimethylhept-5-en-1-yl)-1,3-dioxolane (S11). Triethylorthoformate ($69 \mathrm{~mL}, 0.42 \mathrm{~mol}$) and
 ethylene glycol ($117 \mathrm{~mL}, 2.09 \mathrm{~mol}$) were added to a solution of (\pm)-10camphorsulfonic acid ($1.62 \mathrm{~g}, 6.99 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.0 L). Neat (S)-citronellal ($25.2 \mathrm{~mL}, 139 \mathrm{mmol}$) was added dropwise via syringe over 10 minutes. The colourless solution was stirred at ambient temperature for 20 minutes before it was quenched with sat. aq. NaHCO_{3} solution $(300 \mathrm{~mL})$. The organic phase was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 200 \mathrm{~mL})$. The combined organic phases were washed with brine $(2 \times 200 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to a colourless liquid. This liquid can be purified by flash chromatography
(hexane/t-butyl methyl ether 70:30) to give the title compound as a colourless liquid ($27.1 \mathrm{~g}, 98 \%$). More conveniently, the crude mixture was distilled under high vacuum, discarding the fore-run but collecting the fraction distilling between $66-69^{\circ} \mathrm{C}$ at $1.6 \times 10^{-2} \mathrm{mbar}$. The product was isolated as a colourless liquid in a slightly reduced yield ($23.1 \mathrm{~g}, 84 \%$). $[\alpha]_{D}^{20}=-4.3\left(\mathrm{c}=1.15, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.10(\mathrm{tq}, J=7.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dd}, J=5.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.89-$ $3.80(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.62(\mathrm{~m}, 5 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.32(\mathrm{~m}$, $1 \mathrm{H}), 1.28-1.13(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=131.2,124.7$, 103.8, 64.7, 64.6, 40.9, 37.5, 29.1, 25.7, 25.4, 19.8, 17.6 ppm. IR (film): $\tilde{v}=2960,2915,2877,1454$, 1409, 1378, 1130, 1040, $945 \mathrm{~cm}^{-1} . \mathrm{MS}($ EI) $\mathrm{m} / \mathrm{z}(\%): 136$ (10), 113 (28), 69 (20), 41 (35). HRMS (ESIpos) m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{2}: 199.1693$, found: 199.1692. The analytical and spectroscopic data are in agreement with those reported in the literature. ${ }^{[12]}$
(S)-5-(1,3-dioxolan-2-yl)-4-methylpentanal (27). Sudan Red III ($5-10 \mathrm{mg}$) was added to a solution of
 ketal S11 (22.5 g, 114 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ before ozone was bubbled ($35-40 \mathrm{~g} / \mathrm{Nm}^{3}, 420$ minutes) through the mixture until a colour change from red/pink to pale yellow was observed. After purging with oxygen for 30 minutes dimethyl sulfide ($17 \mathrm{~mL}, 0.23 \mathrm{~mol}$) was added and the mixture was allowed to reach ambient temperature over 12 hours. The mixture was concentrated to give a yellow oil which was dissolved in pentane $(300 \mathrm{~mL})$. This solution was washed with brine $(3 \times 200 \mathrm{~mL})$, the combined brine washes were back-extracted with pentane (200 mL) and the combined pentane layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to a yellow oil. This residue was purified by flash chromatography (hexane/EtOAc $100: 0$ to $80: 20$) to yield the title compound as a colourless liquid ($19 \mathrm{~g}, 97 \%$). Alternatively, the crude product can be purified by distillation under high vacuum, collecting the fraction distilling between $72-75^{\circ} \mathrm{C}$ at $6 \times 10^{-2} \mathrm{mbar}$; in this case, the title compound was isolated as a colourless liquid in a deminished yield (10.3 g, 53 \%). $[\alpha]_{D}^{20}=-5.9\left(c=1.36, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.77(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dd}, J=5.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.86-3.80$ $(\mathrm{m}, 2 \mathrm{H}), 2.52-2.37(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.48(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.8,103.6,64.9,64.8,41.7,40.7,30.0,29.1,19.9 \mathrm{ppm}$. IR (film): $\tilde{v}=2955,2880,2722,1722,1411,1137,1034,948 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) $\mathrm{m} / \mathrm{z}(\%): 113$ (3), 73 (100), 55 (6), 45 (20). HRMS (ESIpos) m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}$: 195.0992, found: 195.0993. The analytical and spectroscopic data are in agreement with those reported in the literature. ${ }^{[13]}$
(R,E)-5-(1,3-dioxolan-2-yl)-4-methylpent-2-enal (28). Diethyl allyl phosphate ($12.7 \mathrm{~mL}, 71.3 \mathrm{mmol}$)
 was added to a solution of aldehyde 27 ($10.2 \mathrm{~g}, 59.4 \mathrm{mmol}$) in THF (48 mL). Palladium(II) acetate ($530 \mathrm{mg}, 2.36 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(6.00 \mathrm{~g}, 71.4 \mathrm{mmol})$ were introduced and the orange heterogeneous mixture was placed in a pre-heated oil bath at $86{ }^{\circ} \mathrm{C}$. The
mixture was stirred at reflux temperature under a stream of argon for 60 hours, causing a gradual color change to pale green/brown. The mixture was allowed to cool and partitioned between t-butyl methyl ether (200 mL) and deionized water (100 mL). The organic phase was separated and the aqueous phase was further extracted with portions of t-butyl methyl ether ($2 \times 100 \mathrm{~mL}$). The combined organic layers were washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (100 mL) and brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resulting orange oil was first purified by flash chromatography (hexane/t-butyl methyl ether $50: 50$) giving the product as a colourless liquid contaminated with the corresponding allyl enol ether. This material was further purified by Kugelrohr distillation, collecting the fraction that distilled between $80-90^{\circ} \mathrm{C}$ at $2 \times 10^{-2} \mathrm{mbar}$ to give the title compound as a paleyellow pungent oil ($5.87 \mathrm{~g}, 58 \%$). $[\alpha]_{D}^{20}=-59.5\left(\mathrm{c}=0.79, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.51$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.80(\mathrm{dd}, J=15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{ddd}, J=15.7,7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{t}, \mathrm{J}=4.8$ Hz, 1H), 4.02-3.89 (m, 2H), 3.88-3.80 (m, 2H), 2.81-2.65 (m, 1H), 1.89-1.67 (m, 2H), 1.16 (d, J = 6.8 $\mathrm{Hz}, 3 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=194.4,163.2,131.3,102.9,65.1,65.0,39.9,33.2,19.8$ ppm. IR (film): $\tilde{v}=2965,2882,1688,1410,1130,1029,977 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (\%): 113 (3), 73 (100), 55 (3), 45 (15). HRMS (ESIpos) m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}: 193.0835$, found: 193.0837.

Aldol S12. Triethylamine ($5.4 \mathrm{~mL}, 39 \mathrm{mmol}$) was added to a solution of (S)-4-benzyl-3-(2-
 (benzyloxy)acetyl)oxazolidin-2-one (36) ($9.68 \mathrm{~g}, 29.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL). The mixture was cooled to $-78^{\circ} \mathrm{C}$ before a solution of dibutylboron triflate (1 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 30 \mathrm{~mL}, 30 \mathrm{mmol}$) was added at such a rate as to kept the internal temperature below $-65^{\circ} \mathrm{C}$. The reaction was allowed to reach $0{ }^{\circ} \mathrm{C}$ over 1.25 hours. At this point the reaction was re-cooled to $-78^{\circ} \mathrm{C}$ before a solution of enal $28(4.22 \mathrm{~g}, 24.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added at such a rate as to keep the internal temperature below $-65^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 minutes and then allowed to reach $0^{\circ} \mathrm{C}$ over 1.5 hours. The reaction was quenched with $\mathrm{MeOH}(140 \mathrm{~mL})$ followed by pH 7 buffer $(80 \mathrm{~mL})$. Aqueous hydrogen peroxide (35% aq. solution, 40 mL) was added cautiously ensuring that the temperature remained below $10^{\circ} \mathrm{C}$. The mixture was stirred for an additional hour at $0^{\circ} \mathrm{C}$ and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with sat. sodium thiosulfate solution (200 mL, CAUTION: EXOTHERM!) and brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexane/EtOAc $40: 60$) to give the syn-aldol adduct $\mathbf{S 1 2}$ as a colourless syrup ($9.84 \mathrm{~g}, 80 \%$, d.r. 12:1). $[\alpha]_{D}^{20}=+17.9\left(\mathrm{c}=1.13, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.43-7.27(\mathrm{~m}, 8 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H})$, 5.71 (ddd, $J=15.6,7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.56$ (ddd, $J=15.5,6.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.84$ (dd, $J=5.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.66-4.57(\mathrm{~m}, 2 \mathrm{H}), 4.37(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-$ $4.13(\mathrm{~m}, 2 \mathrm{H}), 4.00-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{dd}, \mathrm{J}=13.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, \mathrm{J}=13.4$, $9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 1 \mathrm{H}), 2.48-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{ddd}, \mathrm{J}=13.8,7.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{dt}, \mathrm{J}=13.8,6.2$
$\mathrm{Hz}, 1 \mathrm{H}$) , $1.02(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 170.6, 153.4, 139.1, 137.1, 135.2, 129.5, 129.1, 128.7, 128.6, 128.4, 127.6, 126.6, 103.3, 80.2, 73.7, 73.5, 66.9, 64.8, 64.8, 55.7, 40.7, 37.9, 32.7, 20.7 ppm. IR (film): $\tilde{v}=3467,2957,1776,1707,1389,1210,1110,1028,974 \mathrm{~cm}^{-1}$. MS (EI) m / z (\%): 1013.4 (30), 518.2 (100), 327.1 (2). HRMS (ESIpos) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{NO}_{7} \mathrm{Na}: 518.2149$, found: 518.2154.

Mosher Ester Analysis of Alcohol S12 Triethylamine ($14 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) and DMAP (0.8 mg ,
 $0.01 \mathrm{mmol})$ were added to a solution of alcohol $\mathbf{S 1 2}$ ($17 \mathrm{mg}, 0.034 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ followed by $(R)-(-)$ - α-methoxy- α-trifluoromethylphenylacetyl chloride ($(R)-\mathrm{MTPA}-\mathrm{Cl})(7.6 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$. The resulting mixture was stirred at ambient temperature for 2 hours. After quenching with sat. $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexane/EtOAc 70:30) to give the corresponding (S)-Mosher ester (S)-S13 (19.1 mg, 79\%). $[\alpha]_{D}^{20}=+6.7\left(\mathrm{c}=1.91, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.25(\mathrm{~m}, 11 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.87(\mathrm{dd}, J=15.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{dd}, J=$ $8.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{ddd}, J=15.5,8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dd}, J=5.9,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.50(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.49-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.79-3.70(\mathrm{~m}$, 2 H), $3.53(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}$), $3.13(\mathrm{dd}, J=13.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=13.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.34$ (m, 1H), 1.66-1.54 (m, 2H), 0.99(d, J=6.8 Hz, 3H) ppm. IR (film): $\tilde{v}=2957,2878,1779,1749,1709$, 1454, 1390, 1246, 1169, 1109, 1019, 979, $699 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (\%): 1445.5 (25), 734.3 (100), 478.2 (3), 375.6 (5). HRMS (ESIpos) m / z calcd. for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{NO}_{9} \mathrm{~F}_{3} \mathrm{Na}$: 734.2547, found: 734.2548.
(R)-S13 was prepared analogously ($17.6 \mathrm{mg}, 76 \%) .[\alpha]_{D}^{20}=+46.1 \quad\left(\mathrm{c}=1.73, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.56-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 11 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 2 \mathrm{H}), 5.82$ (ddd, $\mathrm{J}=7.6,4.7,0.8 \mathrm{~Hz}$, 1 H), 5.72 (ddd, $J=15.6,7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.55-5.47(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.63(\mathrm{~m}, 2 \mathrm{H})$, $4.57(d, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=9.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.95-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.18(\mathrm{dd}, J=13.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}$, $J=13.5,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.46(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. IR (film): $\tilde{v}=2957,2878,1779,1749,1709,1454,1390,1246,1169,1109,1019,979,699 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (\%): 1445.5 (25), 734.3 (100), 478.2 (3), 375.6 (5). HRMS (ESIpos) m / z calcd. for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{NO}_{9} \mathrm{~F}_{3} \mathrm{Na}$: 734.2547, found: 734.2549.

Table S-1. Mosher ester analysis for syn-aldol adduct S12 according to Hoye and co-workers ${ }^{[14]}$

Assignment	S12 [ppm]	(S)-S13 [ppm]	(R)-S13 [ppm]	$\Delta(\boldsymbol{\delta}(\mathbf{S}-\mathrm{R}))$ [ppm]
1	5.24	5.45	5.44	+0.01
2	4.37	5.81	5.82	-0.01
3	5.56	5.61	5.51	+0.10
4	5.71	5.87	5.72	+0.15
5	2.41	2.42	2.36	+0.06
6	1.63	1.60	1.55	+0.05
7	4.84	4.76	4.68	+0.08
8	1.02	0.99	0.95	+0.04
9a	4.71	4.50	4.67	-0.12
9b	4.60	4.50	4.57	-0.07
10	4.63	4.45	4.49	-0.04
11a	3.20	3.13	3.18	-0.05
11b	2.66	2.54	2.65	-0.11
12a	4.18	4.16	4.24	-0.08
12b	4.18	4.12	4.15	-0.03

MOM-Ether S14. Tetrabutylammonium iodide ($73 \mathrm{mg}, 0.20 \mathrm{mmol}$) was added to a solution of alcohol S12 ($9.78 \mathrm{~g}, 19.7 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$, whereupon the
 solution turned yellow. The solution was cooled to $0^{\circ} \mathrm{C}$ before Hünig base ($24 \mathrm{~mL}, 0.14 \mathrm{~mol}$) was added dropwise, causing the yellow colour to disappear. MOM-chloride ($6.0 \mathrm{~mL}, 79 \mathrm{mmol}$) was added dropwise with vigorous stirring at such as rate as to keep the internal temperature $\leq+10^{\circ} \mathrm{C}$. Once the addition was complete the mixture was allowed to reach ambient temperature and stirring was continued for 12 hours. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (100 mL) and the phases were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$ and the combined organic phases were washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexane/EtOAc 50:50) to give the title compound as a colourless $\operatorname{syrup}\left(10.7 \mathrm{~g}\right.$, quant.). $[\alpha]_{D}^{20}=-18.5\left(\mathrm{c}=1.16, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41-7.37(\mathrm{~m}$, $2 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 5.69(\mathrm{dd}, J=15.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{ddd}, J=15.6,7.9,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dd}, J=5.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66-4.53(\mathrm{~m}$, $4 \mathrm{H}), 4.41(\mathrm{dd}, \mathrm{J}=7.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~s}$, $3 \mathrm{H}), 3.21(\mathrm{dd}, J=13.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=13.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.54(\mathrm{~m}$, $2 \mathrm{H}), 1.01(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 170.2, 153.3, 141.8, 137.6, 135.3, 129.6, 129.1, 128.5, 128.5, 128.1, 127.6, 123.9, 103.4, 94.0, 79.8, 77.2, 73.7, 66.8, 64.9, 64.8, 55.8, 55.6, 40.8, 37.8, 32.9, 20.8 ppm . IR (film): $\tilde{v}=2954,1779,1709,1389,1210,1105,1032,978 \mathrm{~cm}^{-1}$. MS (EI)
$m / z(\%): 1101.5$ (30), 562.2 (100), 478.2 (8). HRMS (ESIpos) m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{NO}_{8} \mathrm{Na}$: 562.2411 , found: 562.2416.

(2R,3R,6R,E)-2-(Benzyloxy)-7-(1,3-dioxolan-2-yl)-3-(methoxymethoxy)-6-methylhept-4-en-1-ol

(S15). Water (395 $\mu \mathrm{L}, 21.9 \mathrm{mmol}$) was added to a solution of oxazolidinone $\mathbf{S 1 4}$ ($10.7 \mathrm{~g}, 19.8 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ (400 mL). The reaction was cooled to $0^{\circ} \mathrm{C}$ before a solution of lithium borohydride (4 M in THF, 5.45 $\mathrm{mL}, 21.8 \mathrm{mmol}$) was added cautiously, causing evolution of hydrogen gas. After the addition was complete stirring was continued at $0^{\circ} \mathrm{C}$ for 50 minutes. The reaction was quenched with $\mathrm{NaOH}(1 \mathrm{M}$, 10 mL), the mixture was diluted with t-butyl methyl ether (100 mL) and stirred until clean phase separation was reached. The aqueous phase was extracted with t-butyl methyl ether ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (t-butyl methyl ether) to give the title compound as a colourless syrup ($6.42 \mathrm{~g}, 88 \%$). $[\alpha]_{D}^{20}=-67.5 \quad\left(\mathrm{c}=1.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.32(\mathrm{dd}, \mathrm{J}=67.5,11.9 \mathrm{~Hz}, 5 \mathrm{H}), 5.68(\mathrm{ddd}, J=15.6,7.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{ddd}, J=15.6,8.0,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.83(\mathrm{dd}, J=5.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.56(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{ddd}, J=8.1,5.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.77(\mathrm{~m}, 2 \mathrm{H})$, 3.72 (ddd, J = 10.9, 7.1, 3.9 Hz, 1H), 3.64-3.51 (m, 2H), 3.37 (s, 3H), 2.54-2.37 (m, 1H), 2.26-2.12 (m, $1 \mathrm{H}), 1.80-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=141.2,138.5$, $128.6,128.1,127.9,124.6,103.5,93.9,81.4,77.6,73.5,64.8(2 C), 62.1,55.7,40.8,33.0,20.9 \mathrm{ppm}$. IR (film): $\tilde{v}=3489,2955,2885,1454,1406,1098,1028,977 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (\%): 755.4 (45), 389.2 (100), 305.2 (6). HRMS (ESIpos) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Na}: 389.1935$, found: 389.1933.
(2S,3R,6R,E)-2-(Benzyloxy)-7-(1,3-dioxolan-2-yl)-3-(methoxymethoxy)-6-methylhept-4-enal
(30).
 Sulfur trioxide pyridine complex ($5.6 \mathrm{~g}, 35 \mathrm{mmol}$) was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{~mL})$ and the resulting mixture was cooled to $-30^{\circ} \mathrm{C}$. After adding DMSO ($11.2 \mathrm{~mL}, 158 \mathrm{mmol}$) a solution of alcohol S15 ($6.42 \mathrm{~g}, 17.5 \mathrm{mmol})$ and Hünig base ($12.2 \mathrm{~mL}, 70.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added at $-30^{\circ} \mathrm{C}$. The mixture was allowed to reach $0{ }^{\circ} \mathrm{C}$ over 2 hours and the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, and the combined organic layers were washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resulting yellow oil was purified by flash chromatography (t-butyl methyl ether) to give the title compound as a colourless $\operatorname{syrup}(6.29 \mathrm{~g}, 98 \%$, d.r. $13: 1) .[\alpha]_{D}^{20}=-145.0\left(\mathrm{c}=1.33, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.74$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.72$ (ddd, $J=15.6,7.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{ddd}, J=15.6,8.2,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.90-4.77(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.44$ (dd, J = 8.2, 3.6 Hz, 1H), 4.03-3.93(m, 2H), 3.88-3.78(m,3H), 3.29(s,3H), 2.53-2.41(m,1H), 1.76-
$1.60(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=202.9,142.1,136.9,128.5$, 128.3, 128.2, 123.4, 103.3, 93.3, 85.4, 76.3, 73.5, 64.7, 64.6, 55.7, 40.5, 32.9, 20.6 ppm . IR (film): $\tilde{v}=2954,2887,1733,1149,1096,1027,978 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (\%): 751.4 (40), 419.2 (3), 387.2 (100). HRMS (ESIpos) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Na}: 387.1778$, found: 387.1779.

(4S,5R,6R,9R,E)-5-(Benzyloxy)-10-(1,3-dioxolan-2-yl)-6-(methoxymethoxy)-9-methyldeca-1,7-dien-

4-ol (31). Magnesium bromide diethyl etherate ($8.90 \mathrm{~g}, 34.5 \mathrm{mmol}$) was added to a solution of the aldehyde $30(6.29 \mathrm{~g}, 17.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The suspension became instantly yellow and was stirred at $0^{\circ} \mathrm{C}$ for 1 hour. Allyl trimethylsilane ($5.5 \mathrm{~mL}, 35 \mathrm{mmol}$) was added in one portion and stirring continued at ambient temperature for 16 hours before the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL). The organic phase was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to a yellow oil, which was purified by flash chromatography (t-butyl methyl ether) to give the title compound as a pale yellow syrup ($6.47 \mathrm{~g}, 92 \%$, d.r. $14: 1$). $[\alpha]_{D}^{20}=-65.9$ (c = $0.7, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.85-5.68(\mathrm{~m}, 2 \mathrm{H}), 5.42(\mathrm{ddd}, \mathrm{J}=15.6$, $8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.06(\mathrm{~m}, 1 \mathrm{H}), 5.06-5.01(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=5.6,4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{ddd}, J=8.1,6.3$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.32(\mathrm{~m}, 4 \mathrm{H}), 2.50-2.39$ $(\mathrm{m}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=7.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=141.3,138.4,135.0,128.6,128.3,128.0,125.2,117.5$, 103.5, 93.9, 82.7, 78.0, 77.4, 75.1, 70.6, 64.9 (2C), 55.8, 40.8, 39.0, 33.1, 20.9 ppm . IR (film): $\tilde{v}=3477$, 2929, 2886, 1454, 1401, 1212, 1097, 1028, $917 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (\%): 835.5 (30), 629.3 (3), 429.2 (100), 345.2 (5). HRMS (ESIpos) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{Na}: 429.2248$, found: 429.2247.

Mosher Ester Analysis of Alcohol 31. Triethylamine ($21 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$) and DMAP ($1 \mathrm{mg}, 0.01 \mathrm{mmol}$)
 were added to a solution of alcohol 31 ($21 \mathrm{mg}, 0.051 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{~mL})$, followed by $(R)-(-)$ - α-methoxy- α-trifluoromethyl-phenylacetyl chloride $((R)-M T P A-C I)(14.2 \mu \mathrm{~L}, 0.08 \mathrm{mmol})$. The resulting mixture was stirred at ambient temperature for 2 hours, quenched with sat. NaHCO_{3} $(3 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexane/EtOAc 70:30) to give the corresponding (S)-Mosher ester (S)-S16 (24.5 mg, 78\%). $[\alpha]_{D}^{20}=-$ $64.2\left(\mathrm{c}=2.45, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.54(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.24(\mathrm{~m}, 8 \mathrm{H}), 5.68$ (dddd, $J=16.8,10.6,7.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.56 (dd, $J=15.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.48-5.32(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{~d}, \mathrm{~J}=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=8.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=5.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=$
$6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=8.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.89$ $(\mathrm{m}, 2 \mathrm{H}), 3.86-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.62$ (dddd, J = 13.3, 6.7, $3.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.55(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} . \operatorname{IR}(\mathrm{film}): \tilde{v}=$ 2953, 2888, 1746, 1453, 1250, 1169, 1122, 1026, $698 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) $m / z(\%): 1267.5$ (20), 645.3 (100), 501.3 (2). HRMS (ESIpos) m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{O}_{8} \mathrm{~F}_{3} \mathrm{Na}$: 645.2646, found: 645.2645.

The corresponding ester (R)-S16 was prepared analogously ($11.7 \mathrm{mg}, 46 \%$). $[\alpha]_{D}^{20}=-34.4$ (c $=1.17$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.23(\mathrm{~m}, 8 \mathrm{H}), 5.73$ (dddd, $\mathrm{J}=16.9$, $10.5,7.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.50 (ddd, $J=15.5,8.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), $5.35-5.28(\mathrm{~m}, 1 \mathrm{H}), 5.22$ (ddd, $J=15.6,8.3$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.10(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=10.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J=5.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=8.3$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.48(\mathrm{~m}, 4 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{dddd}, J=$ $12.0,6.6,3.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.54(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=6.8$ $\mathrm{Hz}, 3 \mathrm{H}$) ppm. IR (film): $\tilde{v}=2954,2886,1746,1453,1254,1168,1124,1026,920,721,698 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (\%): 1267.5 (15), 1123.5 (3), 645.3 (100), 501.3 (4). HRMS (ESIpos) m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{O}_{8} \mathrm{~F}_{3} \mathrm{Na}$: 645.2646 , found: 645.2647 .

Table S-2. Mosher ester analysis for product $\mathbf{3 1}$ according to Hoye and co-workers ${ }^{[14]}$

Assignment	31 [ppm]	(S)-S16 [ppm]	(R)-S16 [ppm]	$\boldsymbol{\Delta}(\boldsymbol{\delta}(\mathbf{S}-\mathrm{R}))[\mathrm{ppm}]$
1a	5.07	5.06	5.11	-0.05
1b	5.04	5.02	5.07	-0.05
2	5.79	5.68	5.73	-0.05
3a	2.36	2.62	2.65	-0.03
3b	2.30	2.42	2.50	-0.08
4	3.75	5.37	5.30	+0.07
5	3.35	3.57	3.53	+0.04
6	4.30	4.19	4.07	+0.12
7	5.43	5.37	5.22	+0.15
8	5.70	5.56	5.50	+0.06
9	2.44	2.42	2.35	+0.07
10	1.05	0.99	0.98	+0.01
11ab	1.66	1.63	1.61	+0.02
12	4.83	4.80	4.79	+0.01
13a	4.90	4.74	4.69	+0.05
13b	4.63	4.62	4.53	+0.09
14a	4.72	4.68	4.62	+0.06
14b	4.56	4.52	4.48	+0.04
15	3.33	3.34	3.29	+0.05

Compound S17. 2,6-Lutidine ($3.7 \mathrm{~mL}, 32 \mathrm{mmol}$) and t-butyl dimethylsilyltriflate ($5.44 \mathrm{~mL}, 23.7 \mathrm{mmol}$)
 were added to a solution of alcohol $31(6.42 \mathrm{~g}, 15.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 hours before it was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL). The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexane/EtOAc 80:20) to give the title compound as a colourless $\operatorname{syrup}(7.21 \mathrm{~g}, 88 \%) .[\alpha]_{D}^{20}=-68.4\left(\mathrm{c}=1.02, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.48-7.22(\mathrm{~m}, 5 \mathrm{H})$, $5.89-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.56(\mathrm{dd}, J=15.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{ddd}, J=15.6,8.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-5.04(\mathrm{~m}$, $1 \mathrm{H}), 5.02(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=5.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.67(\mathrm{~m}, 3 \mathrm{H}), 4.53(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.24(\mathrm{dd}, \mathrm{J}=8.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H})$, 3.34-3.30(m, 1H), 2.60-2.45 (m, 1H), 2.45-2.27 (m, 2H), 1.80-1.58(m, 2H), $0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=140.2,138.9,135.8$, $128.4,128.2,127.6,126.1,117.0,103.6,93.6,83.5,76.4,74.6,72.6,64.9,64.8,56.0,40.8,37.8,33.1$, 26.1, 20.8, 18.3, -4.2, -4.2 ppm. IR (film): $\tilde{v}=2954,2884,1472,1255,1147,1098,1028,916,835 \mathrm{~cm}^{-}$ ${ }^{1}$. MS (EI) m / z (\%): 1063.6 (30), 543.3 (100), 459.3 (13), 351.2 (3). HRMS (ESIpos) m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{O}_{6} \mathrm{SiNa}$: 543.3112, found: 543.3111.

Alcohol 32. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone ($233 \mathrm{mg}, 1.00 \mathrm{mmol}$) was added in a single
 portion to a pre-heated solution of the benzyl ether $\mathbf{S 1 7}$ (134 mg, 0.257 mmol) in a mixture of 1,2 -dichloroethane (1.5 mL) and pH 7.4 buffer solution (1.5 mL) at $50^{\circ} \mathrm{C}$. The reaction was stirred at this temperature for 50 minutes before allowing the mixture to reach ambient temperature. The mixture was diluted with t-butyl methyl ether (20 mL) and washed with sat. NaHCO_{3} solution (5 mL) and brine (5 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography (hexane/EtOAc 70:30) to give the title compound as a colourless syrup $(77.1 \mathrm{mg}, 70 \%) \cdot[\alpha]_{D}^{20}=-72.4 \quad\left(\mathrm{c}=1.11, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.77(\mathrm{ddt}, \mathrm{J}=17.4$, $10.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.64 (ddd, $J=15.6,8.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.34 (ddd, $J=15.6,8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.13-5.04$ $(\mathrm{m}, 2 \mathrm{H}), 4.83(\mathrm{dd}, J=5.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=8.3$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.79(\mathrm{~m}, 3 \mathrm{H}), 3.47(\mathrm{td}, J=6.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91$ (s, 9H), $0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=141.8,134.2,125.1,117.7$, 103.4, 93.4, 77.2, 77.0, 74.5, 71.6, 64.7 (2 x), 55.5, 40.7, 38.5, 33.2, 25.9, 20.9, 18.1, $-3.8,-4.4$ ppm. IR (film): $\tilde{v}=3494,2954,2929,2885,2857,1472,1408,1361,1253,1147,1094,1030,917,836$, $776 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (\%): 883.5 (40), 453.3 (100), 369.2 (22), 237.1 (3). HRMS (ESIpos) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{SiNa}: 453.2643$, found: 453.2645 .

Alcohol 33. $\mathrm{Co}(\mathrm{nmp})_{2}(355 \mathrm{mg}, 0.628 \mathrm{mmol})$ was added to a solution of alcohol $32(2.63 \mathrm{~g}, 6.12$ mmol) in $i-\mathrm{PrOH}(61 \mathrm{~mL})$. The solution was degassed by 3 freeze-
 pump-thaw cycles and back-filled with oxygen. After adding t - BuOOH (5 M in decane, $122 \mu \mathrm{~L}, 0.612 \mathrm{mmol}$) a balloon of oxygen was fitted to the flask which was placed in a pre-heated oil bath at $55^{\circ} \mathrm{C}$. The mixture turned green within 5 minutes of heating and stirring was continued for 16 hours. After reaching ambient temperature the mixture was concentrated to a green oil, which was purified by flash chromatography (hexane/EtOAc 20:80) to give the title product as a colourless syrup (1.89 g, 69\%). $[\alpha]_{D}^{20}=-19.7 \quad\left(\mathrm{c}=1.04, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=5.74$ (ddd, $J=15.7,7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.44 (ddd, $J=15.7,6.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $4.84(\mathrm{dd}, J=5.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.34(\mathrm{~m}, 1 \mathrm{H}), 4.31$ ($q, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.27(\mathrm{ddd}, J=7.7,6.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.74(\mathrm{~m}, 4 \mathrm{H}), 3.49(\mathrm{dd}, J$ $=11.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.43$ (dddd, $J=14.4,7.7,6.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.94-$ $1.88(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{ddd}, J=13.7,7.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}$, $9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=140.0,125.2,103.5,94.3,86.5$, $78.6,75.4,73.4,64.9,64.8,64.7,55.5,40.8,37.1,33.1,26.0,20.9,18.1,-3.9,-4.6 \mathrm{ppm} . \operatorname{IR}(f i l m): \tilde{v}=$ 3467, 2954, 2927, 2885, 2856, 1472, 1361, 1255, 1131, 1035, 942, 836, $775 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)$: 915.5 (30), 469.3 (100), 385.2 (10). HRMS (ESIpos) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{SiNa}$: 469.2592, found: 469.2597.

Aldehyde S18. Hünig base ($2.8 \mathrm{~mL}, 16 \mathrm{mmol}$) was added at $-30^{\circ} \mathrm{C}$ to a solution of alcohol $33(1.13 \mathrm{~g}$,
 2.53 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$ and the resulting mixture was stirred for 5 minutes at this temperature. In a second flask a suspension of sulfur trioxide pyridine complex ($1.26 \mathrm{~g}, 7.92 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was treated with DMSO ($2.3 \mathrm{~mL}, 3.4 \mathrm{mmol}$) and the resulting mixture was stirred for 15 minutes at ambient temperature. This suspension was added to the alcohol solution at $-30^{\circ} \mathrm{C}$, rinsing the flask with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$. The reaction mixture was allowed to slowly reach $-20^{\circ} \mathrm{C}$ over 1 hour and stirring was continued for another 0.5 hour at this temperature. The mixture was diluted with t-butyl methyl ether (20 mL) and the reaction was quenched with pH 7 phosphate buffer (50 mL). The aqeous layer was separated and extracted with t-butyl methyl ether ($3 \times 50 \mathrm{~mL}$). The combined organic phases were washed with brine (150 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to yield the crude aldehyde S18 as a yellow oil which was used in the next step without further purification. An aliquot was purified for analytical purposes by flash chromatography (EtOAc/hexane 1:1): $[\alpha]_{\mathrm{D}}^{20}=-0.4\left(\mathrm{c}=0.79, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.74(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}$, 1 H), 5.77 (ddd, $J=15.6,7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.44 (ddd, $J=15.7,6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.84 (dd, $J=5.7,4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.73(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{ddd}, J=9.6,7.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.25(\mathrm{~m}$, 2 H), 3.98-3.92 (m, 2H), $3.86(\mathrm{dd}, J=7.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.37(\mathrm{~m}$,

1 H), 2.18 (ddd, $J=13.0,7.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.00 (ddd, $J=13.3,9.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.71 (ddd, $J=13.9,7.7$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13}{ }^{1} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=203.1,140.6,124.8,103.5,94.2,87.5,82.1,74.9,72.3,64.9,64.8$, 55.6, 40.8, 37.2, 33.1, 25.9, 20.9, 18.1, $-3.9,-4.6 \mathrm{ppm}$. IR (film) $\tilde{v}=2956,2928,2884,2858,1733$, 1472, 1258, 1128, 1097, 1028, 976, 939, 924, 833, 802, 775, 755, $733 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESIpos) $\mathrm{m} / \mathrm{z}(\%)$: $467.2(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{SiNa}: 467.2436$, found: 467.2439.

Propargyl Alcohol 34. A Schlenk tube was charged with $\mathrm{Zn}(\mathrm{OTf})_{2}$ (dried at $120^{\circ} \mathrm{C}$ under high vacuum
 for 24 hours, $2.25 \mathrm{mg}, 6.18 \mathrm{mmol}$) and (-)-N-methylephedrine (dried aceotriopically by distilling toluene off the compound (3 $x), 1.18 \mathrm{~g}, 6.60 \mathrm{mmol})$. After the addition of toluene (6.0 mL), Hünig base ($1.2 \mathrm{~mL}, 6.9 \mathrm{mmol}$) was added and the resulting suspension was stirred for 2 hours at ambient temperature before ethynyltrimethylsilane ($0.91 \mathrm{~mL}, 6.3 \mathrm{mmol}$) was introduced. After stirring for another 1.5 hours at ambient temperature a solution of aldehyde $\mathbf{S 1 8}$ ($1.09 \mathrm{~g}, 2.45 \mathrm{mmol}$) in toluene (15.0 mL with rinses) was added in one portion to the milky suspension. After stirring for 18 hours at ambient temperature, the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The aqueous layer was separated and extracted with t-butyl methyl ether $(3 \times 50 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexane/ EtOAc 7:3) to provide the title compound as a yellow oil ($0.96 \mathrm{~g}, 65 \%$ over 2 steps, d.r. 10.7:1). $[\alpha]_{\mathrm{D}}^{20}=-163\left(\mathrm{c}=1.11, \mathrm{CHCl}_{3}\right.$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.74$ (ddd, J=15.7, 7.6, 1.0 Hz, 1 H), 5.43 (ddd, $J=15.7,6.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.83 (dd, $J=5.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.22(\mathrm{~m}, 4 \mathrm{H}), 3.983 .91(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{dd}, J=7.8,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.39(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.42$ (ddq, $J=7.0,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{ddd}, J=13.1,6.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.91 (ddd, $J=13.2,9.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.70 (ddd, $J=13.7,7.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.60(\mathrm{ddd}, J=13.1,6.1,6.1 \mathrm{~Hz}$ $1 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=138.9,124.0,102.7,102.5,93.2,89.6,85.7,80.1,74.1,72.1,65.0,63.9,63.8,54.6$, 39.8, 37.1, 32.1, 25.0, 19.9, 17.2, -1.1, -4.9, -5.6 ppm . IR (film) $\tilde{v}=3432,2956,2929,2886,2858$, 1472, 1408, 1361, 1251, 1129, 1099, 1036, 949, 841, $775 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESIpos) m / z (\%): 565.3 (100 ($\mathrm{M}+\mathrm{Na}$)). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{50} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}$: 565.2987, found: 565.2987.

Mosher Ester Analysis of Propargyl Alcohol 34. Hünig base ($9.0 \mu \mathrm{~L}, 52 \mu \mathrm{~mol}$) was added to a solution

of alcohol $34(10.9 \mathrm{mg}, 17 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(035 \mathrm{~mL})$ followed by (R) -(-)- α-methoxy- α-trifluoromethyl-phenylacetyl chloride ((R)-MTPACI) $(6.0 \mu \mathrm{~L}, 32 \mu \mathrm{~mol})$. After stirring for 17 hours at ambient temperature the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and the reaction was quenched with sat. $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$,
filtered and concentrated. The residue was purified by flash chromatography (hexanes/ t-butyl methyl ether $4: 1$) to give the corresponding (S)-Mosher ester (S)-S19 (10 mg, 76\%). $[\alpha]_{\mathrm{D}}^{20}=-38.8$ $\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.59-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{tdd}, \mathrm{J}=3.5,2.3,1.1 \mathrm{~Hz}, 3 \mathrm{H})$, 5.72 (ddd, $J=15.8,7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{ddd}, J=15.6,6.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.83$ $(\mathrm{dd}, J=5.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.59(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{dt}, J=8.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{ddd}, J=3.9,3.3,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.21(\mathrm{dd}, J=7.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{dd}, J=7.5,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.57(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{ddd}, J=13.8,7.7,4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.60(\mathrm{dt}, J=13.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$, 0.06 (s, 3H) ppm. IR (film) $\tilde{v}=2956,2930,2886,2858,1757,1251,1185,1170,1124,1035,844$, $776 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%): 781.3(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{37} \mathrm{H}_{57} \mathrm{O}_{9} \mathrm{Si}_{2} \mathrm{~F}_{3} \mathrm{Na}$: 781.3385, found: 781.3392.

The corresponding Mosher ester (R)-S19 was prepared analogously ($13.7 \mathrm{mg}, 92 \%$): $[\alpha]_{\mathrm{D}}^{20}=-26.0$ $\left(\mathrm{c}=1.3, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.58-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 3 \mathrm{H}), 5.73(\mathrm{ddd}, \mathrm{J}=$ $15.7,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.51-5.40(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{dd}, J=5.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 4.47(\mathrm{ddd}, J=8.8$, 7.4, 6.4 Hz, 1H), $4.32(\mathrm{dq}, J=4.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.86-3.77(\mathrm{~m}$, $3 \mathrm{H}), 3.65-3.57(\mathrm{~m}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.48-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.11$ (ddd, J=13.1, 6.5, 2.4 Hz, 1H), 1.98 (ddd, $J=13.3,8.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{ddd}, J=13.8,7.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{dt}, J=13.6,6.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.05$ (d, J = 6.7 Hz, 3H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} . \operatorname{IR}($ film $) \tilde{v}=2956,2930$, 2886, 2858, 1757, 1251, 1185, 1170, 1124, 1035, 844, $776 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESIpos) m / z (\%): 781.3 (100 $(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{37} \mathrm{H}_{57} \mathrm{O}_{9} \mathrm{Si}_{2} \mathrm{~F}_{3} \mathrm{Na}$: 781.3385, found: 781.3396.

Table S-3. Mosher ester analysis for the assignment of the $C(3)$ stereocenter according to Hoye and co-workers; ${ }^{[14]}$ arbitrary numbering as shown in the insert

Assignment	$\mathbf{3 4}[\mathrm{ppm}]$	(S)-S19 $[\mathrm{ppm}]$	(R)-S19 $[\mathrm{ppm}]$	$\boldsymbol{\Delta}(\boldsymbol{\delta}(\mathbf{S}-\mathbf{R}))[\mathrm{ppm}]$
3	4.23	5.62	5.48	+0.19
4	4.31	4.41	4.47	-0.06
5 a	2.04	2.02	2.11	-0.09
5 b	1.92	1.99	1.98	+0.01
6	4.31	4.29	4.32	-0.03
7	3.76	3.78	3.81	-0.03
8	4.27	4.21	4.22	-0.01
9	5.43	5.43	5.44	-0.01
10	5.73	5.72	5.73	-0.02
11	2.42	2.41	2.42	+0.01
12 a	1.70	1.70	1.70	0
12 b	1.61	1.60	1.62	-0.02
13	4.83	4.83	4.83	0
14	1.05	1.05	1.05	0
TMS-Me	1.05	0.17	0.12	+0.05

Terminal Alkyne S20. Potassium carbonate ($350 \mathrm{mg}, 2.53 \mathrm{mmol}$) was added to a solution of
 propargyl alcohol 34 ($890 \mathrm{mg}, 1.64 \mathrm{mmol}$) in dry methanol (16 mL) at $0^{\circ} \mathrm{C}$. The suspension was allowed to warm to ambient temperature while it was vigouresly stirred for 2 hours. The mixture was diluted with t-butyl methyl ether (20 mL) and the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL). The organic phase was separated and the aqueous phase was extracted with t-butyl methyl ether $(2 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexane/EtOAc 60:40 to 40:60) to provide the title compund as a colourless syrup ($698 \mathrm{mg}, 85 \%$, d.r. $16: 1$). $[\alpha]_{D}^{20}=-20.7$ (c $=2.26$, $\left.\mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): see Table $\mathrm{S}-4 ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): see Table S-4. ${ }^{29} \mathrm{Si} \mathrm{NMR}$ (99 MHz, CDCl_{3}) $\delta=19.00 \mathrm{ppm}$. IR (film): $\tilde{v}=3420,3309,2955,292,2885,2857,1472,1361,1254$, 1127, 1099, 1063, 947, 835, $775 \mathrm{~cm}^{-1}$. MS (EI) m / z (\%): 963.5 (13), 493.3 (100). HRMS (ESIpos) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{SiNa}$ 493.2592, found: 493.2594.

Bis(alkenyl)stannane 35. $\mathrm{PdCl}_{2}(t-\mathrm{BuNC})_{2}(21 \mathrm{mg}, 61 \mu \mathrm{~mol})$ was added to a solution of alkyne S20

$(284 \mathrm{mg}, 0.603 \mathrm{mmol})$ in THF (2.0 mL) at ambient temperature. After dropwise addition of hexabutyldistannane $(0.45 \mathrm{~mL}$, 0.89 mmol) to the orange suspension the reaction mixture turned into a dark red solution, with increasing colour intensity over time. After stirring for 20 hours at ambient temperature the mixture was concentrated under reduced pressure. The residual oil was purified by flash chromatography ((hexane/ $\mathrm{NEt}_{3} 99: 1$)/t-butyl methyl ether 9:1 to 8:1) to afford the title compound as a yellow-orange oil ($588 \mathrm{mg}, 93 \%$). $[\alpha]_{\mathrm{D}}^{20}=-8.1$ (c $=1.0, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.81$ (ddd, $J=89.0,31.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.74 (ddd, $J=15.7,7.6,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.43$ (ddd, $J=15.7,6.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.83 (dd, $J=5.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.23(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{ddd}, J=9.2,7.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.76$ $(\mathrm{m}, 3 \mathrm{H}), 3.71(\mathrm{dd}, \mathrm{J}=8.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{ddt}, J=13.8,6.3,6.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 1.82 (ddd, $J=13.1,6.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{ddd}, J=13.8,6.6,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.55-1.38(\mathrm{~m}, 12 \mathrm{H}), 1.31(\mathrm{tt}, J=7.2,7.2 \mathrm{~Hz}, 12 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.99-0.82(\mathrm{~m}, 39 \mathrm{H}), 0.06(\mathrm{~s}$, $6 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.1,144.3,139.5,125.2,103.5,94.4,87.8,86.3,80.4$, $75.2,73.4,64.9,64.8,55.5,40.8,38.7,33.1,29.4,29.3,27.7,27.5,26.0,20.9,18.1,13.8,13.8,11.5$, 11.0, $-3.8,-4.6 \mathrm{ppm} .{ }^{119} \mathrm{Sn} \mathrm{NMR}\left(149 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-59.2,-66.6 \mathrm{ppm}$. IR (film) $\tilde{v}=3476,2955$, 2927, 2871, 2855, 1464, 1376, 1256, 1124, 1101, 1041, 951, 835, 775, $670 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)$: 1073.5 (100 (M+Na)). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{48} \mathrm{H}_{96} \mathrm{O}_{7} \mathrm{SiSn}_{2} \mathrm{Na}$: 1075.4860, found: 1075.4879.

Table S-4. NMR data of terminal alkyne S20; arbitrary numbering scheme as shown in the insert

atom n°	${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)					${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	
	$\boldsymbol{\delta}$ [ppm]	m	\boldsymbol{J} [Hz$]$	COSY	NOESY	$\boldsymbol{\delta}$ [ppm]	HMBC
1	3.76	dd	7.8, 3.3	(2), 5	(3b)	86.6	3, (4), 5, 6
2	4.32-4.29	m	-	(1),(3a)	$\begin{gathered} (21),(22), \\ (19),(6) \end{gathered}$	73.0	(1), 3b, (5)
3 a	2.06	ddd	13.1, 6.4, 2.0	3b, 4	4	379	(4)
3 b	1.93	ddd	13.2, 8.9, 4.5	2, 3a, 4	(1), 15	37.9	(4)
4	4.35	dt	8.9, 6.2	3ab, (15)	$3 \mathrm{~b}, 15-\mathrm{OH}$	80.9	3a, (15)
5	4.27	t	7.2	1,6	7,13ab, (14)	75.2	6, 7, 13ab
6	5.43	dd	15.7, 6.6	5,7	(2), 8, (22)	125.0	5,8
7	5.73	dd	15.6, 7.6	6, 8	5, (22)	140.0	5, 8, 9ab, 22
8	2.42	sept	7.0	9a, 7, 22	6, 22	33.1	6, 7, 10, 9ab
9 a	1.70	ddd	13.8, 7.8, 4.6	9b, 8, (10)	9b	40.8	, 7
9 b	1.60	dt	13.9, 6.2	9a, (10)	$9 \mathrm{a}, 22$	40.8	,
10	4.83	t	5.2	(9ab)	(22)	103.5	11ab,12ab
11a	3.98-3.91	m	-	11b	11b, 12ab	64	12ab
11b	3.84-3.78	m	-	11a	11a, 12ab	64.9	12ab
12a	3.98-3.91	m	-	12b	11ab, 12b		
12b	3.84-3.78	m	-	12a	11ab, 12a	64.8	11ab
13a	4.70	d	6.6	13b	5, 13b, 14ab		
13b	4.64	d	6.6	13a	2, 6-TBS, 14a	94.3	5, 8, 9ab, 14
14	3.39	s	-	-	13ab, (5)	55.6	13ab
15	4.24	d	6.2	4, (17)	(15-OH), 3a	65.3	$3 \mathrm{a}(\mathrm{b}), 17$
16	-	-	-	-	-	82.1	$\begin{gathered} 4,(15),(15-\mathrm{OH}) \\ 17 \end{gathered}$
17	2.42	d	2.1	15	-	73.8	-
18	-	-	-	-	-	18.1	19, 20,21
19	0.9	S	-	-	20, 21, (2)	26.0	-
20	0.09	S	-	-	19, (2)	-3.9	21
21	0.07	5	-	-	19, (2)	-4.6	20
22	1.05	d	6.8	8	$\begin{gathered} (6),(7), 8,9 b \\ (10) \end{gathered}$	20.9	7, 8, 9ab
$15-\mathrm{OH}$	2.91	s	16.9	15	(4), (15)	-	-

Completion of the Total Synthesis

Dienylstannane 37. A solution of bisstannane 35 ($204 \mathrm{mg}, 0.194 \mathrm{mmol}$) in degassed N-methyl-2-
 pyrrolidone (1.0 mL , with rinses) was added to a suspension of $\mathrm{Pd}\left(t-\mathrm{Bu}_{3} \mathrm{P}\right)_{2} \quad(15 \mathrm{mg}, 29 \mu \mathrm{~mol})$, tetrabutylammonium diphenylphosphinate ($115 \mathrm{mg}, 0.250 \mathrm{mmol}$) and lithium chloride ($27 \mathrm{mg}, 0.64 \mathrm{mmol}$) in degassed N -methyl-2-pyrrolidone (0.5 mL). The dark mixture was placed in a preheated oil bath at $60^{\circ} \mathrm{C}$. A
solution of alkenyliodide $\mathbf{2 5}$ ($114 \mathrm{mg}, 0.236 \mathrm{mmol}$) in degassed N-methyl-2-pyrrolidone (1.0 mL) was added via syringe pump over a period of 3 hours to the suspension at $60^{\circ} \mathrm{C}$. After stirring for additional 14 hours at $60^{\circ} \mathrm{C}$ the brown mixture was cooled to ambient temperature and the reaction was quenched with pH 7 phosphate buffer (20 mL). The aqueous layer was separated and extracted with t-butyl methyl ether $(3 \times 30 \mathrm{~mL})$. The combined extracts were washed with brine $(2 \times 50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography ((hexane/ $\mathrm{NEt}_{3}=99: 1$)/t-butyl methyl ether $=9: 1$ to $4: 1$ to $3: 1$ to $3: 2$ to $1: 1$ to $1: 2$) to afford the title compound as a pale yellow oil ($109 \mathrm{mg}, 50 \%$); additional fractions contained the destannylated diene $\mathbf{S 2 1}(18 \mathrm{mg}, 11 \%)$, alkenyl chloride $\mathbf{S 2 2}(11 \mathrm{mg}, 12 \%)$ and a $7.6: 1$ mixture of homocoupled alkenyl iodide $\mathbf{S 2 3}$ and starting bis(alkenyl)stannane $\mathbf{3 5} \mathbf{(2 0 ~ m g , ~ 2 0 \%) .}$

Analytical and spectral properties of compound 37: $[\alpha]_{\mathrm{D}}^{20}=-11.5 \quad\left(\mathrm{c}=1.04, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.00(\mathrm{dd}, \mathrm{J}=109.2,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{t}, \mathrm{J}=11.5,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{ddd}, \mathrm{J}=15.7$, $7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{t}, J=10.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{ddd}, J=15.6,6.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=10.0$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=5.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.17(\mathrm{~m}$, $5 \mathrm{H}), 4.14-4.06(\mathrm{~m}, 2 \mathrm{H}), 4.02-3.91(\mathrm{~m}, 4 \mathrm{H}), 3.85-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{dd}, J=8.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}$, $3 \mathrm{H}), 2.89$ (brs, 1H), 2.43 (dp, $J=13.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dp}, J=13.7,9.1,6.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.07$ (ddd, $J=$ $12.7,7.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.78$ (ddd, $J=13.2,6.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.69$ (dddd, $J=36.6,13.7,7.6,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.65-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.42(\mathrm{~m}, 6 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.26(\mathrm{~m}, 7 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.02-0.96(\mathrm{~m}, 8 \mathrm{H}), 0.92-0.83(\mathrm{~m}, 18 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.0,154.7,139.7,134.8,132.7,127.6,125.0,109.7,103.5,94.4,86.2$, $84.5,83.9,81.2,80.8,79.2,75.2,73.4,72.6,64.9,64.8,63.2,55.5,40.8,39.6,38.8,37.2,33.1,29.2$, $27.9,27.5,26.0,25.8,20.9,18.3,18.1,17.5,13.8,11.7,-1.4,-3.8,-4.6 \mathrm{ppm} .{ }^{119}$ Sn NMR (149 MHz, CDCl_{3}): $\delta=-50.8 \mathrm{ppm}$. IR (film) $\tilde{v}=3482,2955,2928,2857,1749,1731,1463,1378,1251,1215$, 1178, 1127, 1099, 1048, 945, 860, 836, $776 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%): 1139.6$ (100 (M+Na)). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{54} \mathrm{H}_{100} \mathrm{O}_{12} \mathrm{Si}_{2} \mathrm{SnNa}$: 1139.5667, found: 1139.5679 .

Analytical and spectral properties of diene S21. $[\alpha]_{\mathrm{D}}^{20}=-23.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$,
 $\left.\mathrm{CDCl}_{3}\right): \delta=6.60(\mathrm{dd}, J=15.1,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{t}, \mathrm{J}=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.80-5.69(\mathrm{~m}, 2 \mathrm{H}), 5.62(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{ddd}, J=15.7,6.4$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=9.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=5.8,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.71(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.06(\mathrm{~m}, 7 \mathrm{H})$, 4.03-3.91 (m, 4H), 3.87-3.79 (m, 2H), 3.73 (dd, J = 8.0, 3.1 Hz, 1H), $3.39(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.49-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{ddd}, \mathrm{J}=13.0,6.2,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.82-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.61$ (ddd, $J=13.8,6.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.27(\mathrm{~m}, 1 \mathrm{H})$, $1.18(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-0.97(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}$,
$3 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.1,139.8,134.6,131.9,127.2,126.4,125.0$, 109.6, 103.5, $94.4,86.4,83.9,81.0,80.8,79.2,75.4,75.3,73.2,72.8,64.9,64.8,63.2,55.6,40.8$, $39.5,38.1,37.1,33.1,27.8,26.0,25.8,20.9,18.4,18.1,17.5,-1.4,-3.8,-4.6 . p p m . \operatorname{IR}(f i l m) \tilde{v}=3486$, 2956, 2930, 2891, 1747, 1462, 1379, 1251, 1214, 1131, 1100, 1048, 951, 861, 836, 809, $776 \mathrm{~cm}^{-1}$. MS (ESIpos) m / z (\%): 849.5 (100 ($\mathrm{M}+\mathrm{Na}$)). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{42} \mathrm{H}_{74} \mathrm{O}_{12} \mathrm{Si}_{2} \mathrm{Na}$: 849.4611, found: 849.4617.

Analytical and spectral properties of (Z)-alkenyl chloride S22. $[\alpha]_{\mathrm{D}}^{20}=-3.6\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR
 $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.27(\mathrm{dd}, J=13.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dd}, \mathrm{J}=13.3$, $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=8.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.11(\mathrm{~m}, 3 \mathrm{H}), 4.08(\mathrm{t}, \mathrm{J}=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dtq}, J=9.6,6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.12 (ddd, J = 12.0, 7.5, 5.7 Hz, 1H), 1.50 (s, 3H), 1.39-1.31 (m, 4H), 1.19 (d, J = 6.7 Hz, 3H), 1.05-0.98 (m, 2H), $0.03(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=173.0,129.9,123.0,109.9,83.9,80.4,79.1$, $77.5,77.2,76.8,76.3,63.3,39.4,37.0,27.6,25.6,18.4,17.5,-1.4 \mathrm{ppm}$. IR (film) $\tilde{v}=2956,2898,1746$, $1729,1629,1456,1379,1249,1214,1175,1129,1084,1056,942,857,842,695,517 \mathrm{~cm}^{-1}$. MS (ESIpos) m / z (\%): 413.2 (100 ($\mathrm{M}+\mathrm{Na}$)). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{Si}_{1} \mathrm{ClNa}$: 413.1522, found: 413.1525.

Chlorodiene 41. 2,6-Lutidine ($115 \mu \mathrm{~L}, 0.987 \mathrm{mmol}$) and copper(II) chloride ($125 \mathrm{mg}, 0.930 \mathrm{mmol}$)
 were added to a solution of dienylstannane 37 (174 mg , 0.156 mmol) in THF (3.2 mL). The resulting purple suspension was stirred for 20 hours at ambient temperature, during which time the colour of the mixture gradually turned brown. After filtration through a short plug of silica, rinsing with t-butyl methyl ether $(25 \mathrm{~mL})$, the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography (EtOAc/hexane $4: 6$ to $1: 1$ to $6: 4$) to afford the title compound as a colourless oil (105 mg, 78\%). $[\alpha]_{\mathrm{D}}^{20}=-28.3\left(\mathrm{c}=0.90, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.70(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.57 (td, $J=11.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{t}, \mathrm{J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.75$ (ddd, $J=15.7,7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.43$ (ddd, $J=15.7,6.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=9.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=5.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.63(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dt}, J=9.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.13(\mathrm{~m}, 5 \mathrm{H}), 4.09(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.05(\mathrm{t}, \mathrm{J}=4.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.74$ (dd, $J=8.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.48-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{ddd}, J=12.6,7.4,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, 1.97 (ddd, $J=13.1,6.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{ddd}, J=13.3,9.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{ddd}, J=13.7,7.7,4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.61(\mathrm{dt}, J=13.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-0.97(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}$, 9H) ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=173.1,139.8,136.9,130.2,126.6,124.9,121.0,109.9$,
$103.5,94.5,86.9,83.9,80.7,79.3,79.0,78.1,75.2,73.2,73.1,64.9,64.8,63.2,55.6,40.8,39.5,38.6$, 37.1, 33.1, 27.8, 26.0, 25.8, 20.9, 18.4, 18.1, 17.5, -1.4, -3.8, -4.6 ppm. IR (film) $\tilde{v}=3447,2955,2931$, 2859, 1730, 1463, 1379, 1252, 1214, 1132, 1102, 1045, 941, 861, 838, $776 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)$: $883.4(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{42} \mathrm{H}_{73} \mathrm{O}_{12} \mathrm{Si}_{2} \mathrm{ClNa}$: 883.4221, found: 883.4231.

Seco Acid 38. A solution of tetrabutylammonium fluoride trihydrate ($29 \mathrm{mg}, 93 \mu \mathrm{~mol}$) in THF (0.15
 mL) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of compound 41 $(10 \mathrm{mg}, 12 \mu \mathrm{~mol})$ in THF (0.05 mL) After stirring for 17 hours at $0^{\circ} \mathrm{C}$, the mixture was slowly warmed to ambient temperature before it was diluted with EtOAc (5 mL) and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The aqueous layer was separated and extracted with EtOAc ($2 \times 5 \mathrm{~mL}$). The combined organic phases were washed with a 1:3 mixture of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash chromatography (EtOAc/AcOH 99:1) to afford the title compound as a colourless oil ($6.0 \mathrm{mg}, 80 \%$). $[\alpha]_{\mathrm{D}}^{20}=-34.8\left(\mathrm{c}=0.60, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.74(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{td}, \mathrm{J}=$ $11.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.94 (dd, $J=15.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.73 (ddd, $J=10.5,9.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.40 (ddd, $J=15.7,8.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=9.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.60(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dt}, J=9.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.27(\mathrm{~m}, 2 \mathrm{H}), 4.19-4.08(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~d}$, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{dd}, J=7.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.76(\mathrm{~m}$, $2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{ddq}, J=14.2,7.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.93$ (ddd, $J=13.6,9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{dt}, J=14.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{ddd}, J=14.0,8.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.52$ $(\mathrm{s}, 3 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=174.1,142.3,137.2,129.8,126.7,123.8,120.8,109.9,103.5,93.6,85.2,83.2,80.5,79.7$, $79.3,77.8,77.0,73.3,72.8,64.9,64.8,55.6,41.0,39.6,38.0,37.5,32.1,27.7,25.6,19.8,17.6 \mathrm{ppm}$ IR (film) $\tilde{v}=3448,2958,2928,1733,1380,1259,1215,1100,1031,869 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESIneg) m / z (\%): $645.3\left(100(\mathrm{M}+\mathrm{Na})\right.$). HRMS (ESIneg): m / z calcd. for $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}_{12} \mathrm{Cl}$: 645.2683, found: 645.2687.

Lactone 40. Sodium hydrogen carbonate ($217 \mathrm{mg}, 2.58 \mathrm{mmol}$) was added to a suspension of 2-
 bromo-1-ethyl-pyridinium tetrafluoroborate (39) (74 mg , $0.27 \mathrm{mmol})$ and seco acid $38(5.5 \mathrm{mg}, 8.5 \mu \mathrm{~mol})$ in 1,2-dichloroethane (17 mL) in a sealed tube. The tube was placed in a pre-heated oil bath at $80^{\circ} \mathrm{C}$ and the mixture was stirred for 22 hours. The light purple suspension was cooled to ambient temperature before the reaction was quenched with pH 7 phosphate buffer (10 mL). The aqueous layer was separated and extracted with EtOAc $(2 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$
and concentrated. The residue was purified by flash chromatography (hexane/EtOAc/AcOH 1:1:0 to 1:2:0 to 100:0:0 to 99:0:1) to provide the title compound as a colourless oil ($1.6 \mathrm{mg}, 30 \%$); a second fraction contained recovered starting material 38 ($3.1 \mathrm{mg}, 56 \%$) [Conditions for LC-MS: ZORBAX Eclipse Plus $\mathrm{C}-18,1.8 \mu \mathrm{~m}, 50 \times 4.6 \mathrm{~mm}, \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}=70: 30, \mathrm{v}=0.8 \mathrm{~mL} / \mathrm{min}, \lambda=250 \mathrm{~nm}, 35^{\circ} \mathrm{C}$, 181 bar, $\mathrm{t}($ carboxylate $)=1.0 \mathrm{~min}, \mathrm{t}($ carboxylic acid $)=1.1 \mathrm{~min}, \mathrm{t}$ (lactone) $=11.6 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-83.3(\mathrm{c}$ $\left.=0.15, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: see Table $\mathrm{S}-5 ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): see Table S-5. IR (film): $\tilde{v}=3455,2959,2923,1747,1651,1456,1379,1365,1260,1215,1149,1096,1030,870$, $847,800 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%): 651.3$ ($100\left(\mathrm{M}+\mathrm{Na}\right.$)). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{O}_{11} \mathrm{CINa}$: 651.2542, found: 651.2548.

Compound S24. Hünig's base ($0.55 \mathrm{~mL}, 3.2 \mathrm{mmol}$), tetrabutylammonium iodide ($11 \mathrm{mg}, 30 \mu \mathrm{~mol}$) and

MOM-chloride ($0.14 \mathrm{~mL}, 1.8 \mathrm{mmol}$) were added to a solution of alcohol 41 ($103 \mathrm{mg}, 120 \mu \mathrm{~mol})$ in 1,2-dichloroethane (1.2 mL),. The dark orange mixture was stirred for 4 hours at $50^{\circ} \mathrm{C}$. After reaching ambient temperature, the mixture was diluted with t-butyl methyl ether (10 mL) and sat. aq. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. The aqueous layer was separated and extracted with t-butyl methyl ether ($2 \times 30 \mathrm{~mL}$). The combined extracts were washed with brine $(40 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexane/EtOAc $7: 3$ to $6: 4$ to $1: 1$ to $1: 2$) to afford the title compound as a yellow oil (99.5 mg, 92\%). $[\alpha]_{\mathrm{D}}^{20}=-50.8$ (c $=0.75, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.65-6.52(\mathrm{~m}, 2 \mathrm{H}), 5.84$ (t, J = 9.9 Hz, 1H), 5.74 (ddd, $J=15.6,7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.47 (ddd, $J=15.7,6.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.99 (dd, $J=9.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=5.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.61(\mathrm{~m}, 4 \mathrm{H}), 4.53(\mathrm{dt}, J=9.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-$ $4.07(\mathrm{~m}, 7 \mathrm{H}), 4.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.86-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{dd}, J=8.0,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.04$ (ddd, J = 12.7, 7.4, 5.6 Hz, 1H), 1.92 (ddd, $J=13.0,6.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.29$ $(\mathrm{m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-0.98(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H})$, 0.07 (s, 3H), 0.04 (s, 9H) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.1,139.1,134.9,130.8,126.3$, $125.4,123.0,110.0,103.5,95.0,94.1,86.8,83.9,82.1,80.8,79.1,78.8,75.6,73.1,72.8,64.9,64.8$, $63.3,55.7,55.5,40.8,39.5,38.3,37.0,33.1,27.8,26.0,25.8,21.0,18.4,18.1,17.6,-1.4,-3.8,-4.6$ ppm. IR (film): $\tilde{v}=2954,2929,2894,1748,1458,1379,1251,1216,1137,1101,1047,919,862,836$ $\mathrm{cm}^{-1} . \mathrm{MS}$ (ESIpos) $m / z(\%): 927.4$ (100 ($\mathrm{M}+\mathrm{Na}$)). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{44} \mathrm{H}_{77} \mathrm{O}_{13} \mathrm{ClSi}_{2} \mathrm{Na}$: 927.4483, found: 927.4493.

Table S-5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of lactone 40; numbering scheme as shown in the Insert

atom n°	${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)					${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	
	δ [ppm]	m	$J_{\text {[}}$ [$]$	COSY	NOESY	δ [ppm]	HMBC
1	-	-	-	-	-	170.5	2
2	4.04	d	5.4	3, 4a	(4a), 23	82.7	4,23
3	2.84-2.74	m	-	2, (4a), 4b, 23	5, 4a, 23	32.3	23
4 a	1.93	ddd	11.4, 7.4, 4.2	(2), 3, 4b, 5	3, 5, 4b	39.0	23
4b	1.52	td	11.5, 10.3	3, 4a, 5	4a, (23)		
5	3.31	dd	11.7, 4,2	4ab, (6)	4a, 6, 10	75.8	2,7
6	4.06	d	5.5	7, (5), (8)	5,7	77.4	7
7	4.75	dd	7.2, 5.4	(4), 7, 8	6, 8, 26	76.6	8, (9)
8	5.61	ddd	11.8, 7.1, 0.9	7,9, (10)	7,9	125.2	7,9
9	6.67	dd	11.8, 11.2	8,10	8,10	130.7	7
10	7.78	dt	11.2, 0.8	(8), 9, (12)	9, 13, 5, (25)	124.9	(8), 12
11	-	-	-	-	-	131.6	9, 10, 12
12	5.09	d	7.3	13, (10)	13	81.4	(10), (13)
13	4.57	ddd	9.6, 7.3, 6.2	12, 14a, 14b	10, 12, 14b	78.4	12
14a	2.14	ddd	13.2, 9.4, 4.6	13, 14b, (15)	12, 14b, 15	37.3	, (16)
14b	2.08	ddd	13.2, 6.3, 1.7	13, 14a, 15	13, 14a, (15)		, 16
15	4.40-4.36	m	-	16, 15-OH	$\begin{gathered} 16,14 a,(15-O H), \\ (14 b) \end{gathered}$	72.8	14b
16	3.94	dd	6.4, 3.3	15, 17	15, 17, 18	84.6	(14b), (17)
17	4.34	dd	8.8, 6.2	16, 18, (19)	16, 19, 29	76.8	19, 29ab
18	5.48	ddd	15.7, 8.8, 1.2	17, 19	16, 31, (20)	124.4	(20)
19	5.87	dd	15.7, 7.0	18, (17)	17, (20)	141.9	17, 20
20	2.49	tq	8.1, 6.9	19, 21b, 31	(18), 19, 31	32.4	31
21a	1.75	dt	13.9, 5.3	22, 21b	20		
21b	1.67	ddd	13.9, 8.4, 4.5	20, 21a, (22)	32	41.0	(22), 31
22	4.84	dd	5.1, 4.5	21a, 21b	28a, 29a	103.5	28b, 29b
23	1.13	d	6.9	3, (4a)	2,3	18.8	2
24		-	-	-	-	109.7	6, 24, 25
25	1.67	s	-	26, (6)	(2), 26	25.8	26
26	1.40	s	-	25	7, 8	26.0	25
27a	3.98-3.92	m	-	27b, 28ab	28a, 28b		
27b	3.86-3.78	m	-	27a, 28ab	28a, 28b	64.9	
28a	3.98-3.92	m	-	27ab, 28b	27a, 27b	64.8	
28b	3.86-3.78	m	-	27ab, 28a	27a, 27b	64.8	
29a	4.74	d	6.6	29b	(17), 29b, (30)	93.7	
29b	4.63	d	6.6	(17), 29a	(17), 29a, 30	93.7	30, (17)
30	3.39	s	-	-	29b	55.8	29a, 29b
31	1.08	d	6.8	20	20, (21a), (21b)	20.1	20
15-OH	3.18	d	4.2	15	15	-	-

Seco Acid 42. A solution of tetrabutylammonium fluoride trihydrate in THF ($1 \mathrm{M}, 0.55 \mathrm{~mL}, 0.55 \mathrm{mmol}$)

was added dropwise to a solution of ester $\mathbf{S} 24$ ($99 \mathrm{mg}, 0.11 \mathrm{mmol}$) in THF (0.7 mL) at $0{ }^{\circ} \mathrm{C}$. After stirring for 2 hours at $0^{\circ} \mathrm{C}$ the ice bath was removed and stirring was continued for 2.5 hours at ambient temperature. After cooling to $0^{\circ} \mathrm{C}$, additional tetrabutylammonium fluoride trihydrate in THF ($1 \mathrm{M}, 0.05 \mathrm{~mL}, 0.05 \mathrm{mmol}$) was added and the solution was stirred for another 1 hour at ambient temperature. After quenching of the reaction with sat. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, the aqueous layer was washed with t-butyl methyl ether ($2 \times 5 \mathrm{~mL}$). The aqueous layer was then acidified with $\mathrm{HCl}(2 \mathrm{M}, 0.1 \mathrm{~mL})$ until pH 4 was reached and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined EtOAc layers were washed with a $3: 1$ mixture of brine and pH 4 phosphate buffer (15 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The yellow residual oil (75.5 mg , 99\%) was used in the next step without further purification. $[\alpha]_{\mathrm{D}}^{20}=-65.6$ $\left(\mathrm{c}=0.91, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.63(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{td}, \mathrm{J}=10.8,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.85 (dd, $J=15.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.75(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.47$ (ddd, $J=15.6,8.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.99 (dd, J $=9.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.66-4.52(\mathrm{~m}, 4 \mathrm{H}), 4.34-4.28(\mathrm{~m}, 2 \mathrm{H})$, 4.18-4.07 (m, 3H), $4.02(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.86-3.77(\mathrm{~m}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}$, $3 \mathrm{H}), 3.30$ (brs, 1H), 2.52-2.40 (m, 1H), 2.40-2.29 (m, 1H), 2.13-2.04 (m, 1H), 2.00 (ddd, J = 13.3, 6.4, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{ddd}, \mathrm{J}=13.7,9.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.42-1.33(\mathrm{~m}, 4 \mathrm{H})$, $1.22(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.5,141.5$, 135.1, 130.4, 126.4, 124.4, 122.8, 110.0, 103.4, 94.1, 93.8, 84.5, 83.1, 81.7, 80.7, 79.3, 78.9, 76.8, $73.2,72.8,64.9,64.8,55.7,55.6,40.9,39.6,37.8,37.3,32.4,27.7,25.6,20.1,17.7 \mathrm{ppm}$. IR (film): $\tilde{v}=3477,2957,2932,2894,1735,1380,1250,1216,1151,1101,1032,918,869 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESIpos) $m / z(\%): 713.3(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{O}_{13} \mathrm{ClNa}$: 713.2910, found: 713.2917.

Macrolactone 43. Hünig's base ($45 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}$) and 2,4,6-trichlorobenzoyl chloride ($34 \mu \mathrm{~L}, 22 \mu \mathrm{~mol}$)
 were added to a solution of seco acid $42(30 \mathrm{mg}, 43 \mu \mathrm{~mol})$ in THF $(0.87 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 2 hours at this temperature, the solvent was removed under reduced pressure and the residue was redissolved in toluene $(9.0 \mathrm{~mL})$. The resulting solution of the mixed anhydride was added via syringe pump over a period of 20 hours to a solution of DMAP (132 mg ,
$1.08 \mathrm{mmol})$ in toluene $(85 \mathrm{~mL})$ at $110^{\circ} \mathrm{C}$. Once the addition was complete, stirring was continued for additional 2 hours at the same temperature. The mixture was then cooled to ambient temperature and the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (100 mL). The aqueous layer was separated and extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with
brine (150 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash chromatography (EtOAc/hexane 6:4 to 8:2 to 9:1) to provide the title compound as a light yellow oil (12 mg, 40\%); additional fractions contained an epimerized macrolactone S25 (1.8 mg, 6\%) and the cyclic head-to-tail dimer S26 ($3.9 \mathrm{mg}, 13 \%$) [Conditions for LC-MS: ZORBAX Eclipse Plus $\mathrm{C}-18,1.8 \mu \mathrm{~m}, 50 \times 4.6 \mathrm{~mm}, \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}=70: 30, \mathrm{v}=0.8 \mathrm{~mL} / \mathrm{min}, \lambda=250 \mathrm{~nm}, 35^{\circ} \mathrm{C}, 158 \mathrm{bar}, \mathrm{t}$ (epimerized macrolactone) $=2.7 \mathrm{~min}, \mathrm{t}($ macrolactone $)=3.4 \mathrm{~min}, \mathrm{t}($ dimer $)=16.0 \mathrm{~min}]$.

The cyclic monomer 43 and the head-to-tail dilactone (lactide) S26 could be unambiguously distinguished by MS/MS fragmentation experiments, see below

Analytical and spectral data of compound 43: $[\alpha]_{\mathrm{D}}^{20}=-25.9$ (c $\left.=0.80, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, 2$ main conformers, ratio 1:0.8, major conformer): see Table S-6. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2\right.$ main conformers, ratio 1:0.8, major conformer): see Table S-6. ${ }^{1} \mathrm{H} N \mathrm{NR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, minor conformer): see Table S-7. ${ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, minor conformer): see Table S-7. IR (film): $\tilde{v}=2958,2933,2892,1741,1454,1381,1256,1213,1151,1099,1031,960 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESIpos) m / z (\%): $695.3(100(\mathrm{M}+\mathrm{Na}))$ see Figures $\mathrm{S}-1-\mathrm{S}-3$; HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{O}_{12} \mathrm{ClNa}$: 695.2805, found: 695.2811.

Table S-6. NMR data of the major conformer of macrolactone 43; numbering scheme as shown in the Insert

atom n°	${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)						${ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	
	$\boldsymbol{\delta}$ [ppm]	m	\boldsymbol{J} [Hz]	COSY	NOESY	ROESY	$\boldsymbol{\delta}$ [ppm]	HMBC
1	-	-	-	-	-		170.1	2, 15, (3)
2	3.90	d	9.2	3	2*	23	80.3	3, 23
3	2.81	$\begin{gathered} \text { ddd } \\ \text { q } \end{gathered}$	$\begin{gathered} 12.2,9,2 \\ 6.5,6.5 \end{gathered}$	2, 23, (4b)	3*	-	37.6	2, 4ab, 23
4 a	2.17	ddd	11.8, 6.3, 5.1	4b, 5, (3)	4a*	-	37.0	6,23
4b	1.55-1.59	m	-	4a, 5	4b*	23	37.0	6, 23
5	4.16-4.13	m	-	4b, (4a), (6)	5*	-	81.4	4b, 7
6	4.74-4.65	m	-	(5), 7	6*	-	77.9	4b, 5, 7, 8
7	5.20	ddd	$6.2,5.4,1.7$	6, 8	7*	-	75.3	5, 8
8	5.92-5.86	m	-	7, 9, 10	8*	-	130.8	7, 9, 10
9	6.61-6.55	m	-	8	9*	-	123.4	7
10	6.61-6.55	m	-	8	10*	-	122.9	8, 12
11	-	-	-	-	-		133.9	9, 10, 13
12	4.49	d	4.9	13	12*	-	78.3	14ab, 27ab
13	4.57-4.54	m	-	12	13*	-	81.1	12, 14ab
14a	2.50-2.42	m	-	13, 15	14a*	-	32.2	12, 16
14b	2.50-2.42	m	-	13, 15	14b*	-	32.2	12, 16
15	4.95	q	8.7	14ab, 16	15*	-	76.2	13,
16	4.05	dd	7.9, 1.3	15	16*	-	80.7	(15), (14)

17	4.22-4.13	m	-	18	-	-	75.2	$\begin{gathered} 15,19,13 \\ 29 a b \end{gathered}$
18	5.58	dd	15.6, 8.6	17, 19, 20	18*	-	125.5	17, 19, 20
19	5.63	dd	15.6, 7.3	18, 20	19*	-	141.3	$\begin{gathered} 17,18,20 \\ 21 \mathrm{ab} \end{gathered}$
20	2.45	dq	7.4, 7.4	19, 31, (21ab)	20*	-	33.1	$\begin{gathered} 18,19,21 \mathrm{ab} \\ 22,31 \end{gathered}$
21a	1.74-1.58	m	-	(20), 21b, 22	21a*b*	-	40.9	19, 20, 22,
21b				21a, 22	21a*b*			31
22	4.83	dd	5.9, 4.4	21ab	22*	-	103.6	28b, 29b
23	1.11	d	6.5	3	23*	(2), (4b)	16.8	2, 4b
24	-	-	-	-	-	-	107.9	6, 25, 26
25	1.48	S	-	26	25*	-	27.2	-
26	1.38	S	-	25	26*	-	24.8	-
27a	4.66	d	6.5	27b	27a*	-	95.1	
27b	4.59	d	6.6	27a	27b*	-	95.1	,
28	3.38	s	-	-	-	-	56.1	$27 a b$
29a	4.72	d	6.6	29b	29ba*	-		
29b	4.67	d	6.7	29a	29ab*	-	93.8	17, 30
30	3.42	s	-	-	-	-	55.5	29ab
31	1.04	d	6.8	20	31*	-	20.8	20, 21ab
32a	3.96-3.91	m	-		-	-	64.8	33ab
32b	3.83-3.78	m						
33a	3.96-3.91	m	-	-	-	-	64.9	32ab
33b	3.83-3.78	m	-				64.9	32 ab

NOESY displays fast exchange with minor conformer (*).

Table S-7. NMR data of the minor conformer of macrolactone 43; numbering scheme as shown in the Insert

atom n°	${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)						${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	
	$\boldsymbol{\delta}$ [ppm]	m	\boldsymbol{J} [Hz]	COSY	NOESY	ROESY	$\boldsymbol{\delta}$ [ppm]	HMBC
1	-	-	-	-	-		170.8	3
2	4.09	d	7.0	3	2*	23	87.4	(3), 4a, 23
3	2.58	$\begin{gathered} \text { ddd } \\ \text { q } \end{gathered}$	$\begin{gathered} 9.7,7.6,7.0 \\ 6.7 \end{gathered}$	2, (4b), 23	3*	-	35.5	2, 4ab, 23
4a	2.33	ddd	12.8, 7.6, 6.0	4b, 5	4a*	-	39.4	(5) 6, 23
4b	1.93	dt	12.2, 9.9	4a, 5	4b*	23	39.4	(5), 6, 23
5	4.48	dd	9.8, 6.0	4 ab	5*	-	77.8	2, 4b, 6
6	4.23-4.12	m	-	7	6*	-	80.0	4b, 5
7	4.91	ddd	7.2, 5.5, 1.7	6,8	7*	-	75.7	6,9
8	5.70	d	11.0, 7.4	7,9	8*	-	134.3	6, (10)
9	6.34	td	11.3, 1.6	8,10	$\begin{gathered} 9 *, 10 \\ 12 \end{gathered}$	-	124.3	7
10	6.63	d	11.7	9	9, 10*	-	122.8	6, 8
11	-	-	-	-	-		134.1	$6,9,10,13$

12	4.23-4.12	m	-	13	12*	-	81.6	(10), 27ab
13	3.96-3.90	m	-	10, 12, 14b	13*	-	84.6	12
14a	1.82	td	12.8, 3.3	13, 14b, 15	14a*		38.1	
14b	1.74-1.57	m	-	14a	14b*		38.1	
15	5.30	td	3.5, 1.0	16	15*	-	75.0	(14b), (2)
16	4.23-4.12	m	-	15	16*	-	84.3	12, (15), 17
17	4.23-4.12	m	-	7	17*	-	75.5	$\begin{gathered} 16,18,19 \\ 29 a \end{gathered}$
18	5.27	dd	15.5, 7.5	17, 19	$\begin{gathered} 18^{*}, 19 \\ 19^{*} \end{gathered}$	-	124.2	20
19	5.60	dd	15.6, 7.3	18, 20	19*	-	141.7	20, 21ab, 31
20	2.38	dq	7.1, 7.1	19, 31, (21ab)	20*	-	33.3	$\begin{gathered} 18,19,21 \mathrm{ab}, \\ 22,31 \end{gathered}$
$21 a$ $21 b$	1.74-1.58	m	-	22	21a*b*	-	40.6	$\begin{gathered} 19,20,22 \\ 31 \end{gathered}$
22	4.77	dd	5.6, 4.6	21ab	22*	-	103.4	$\begin{gathered} 20,32 a b, \\ 33 a b \end{gathered}$
23	1.16	d	6.7	3	23*	(2), (4b)	17.8	4b
24	-	-	-	-	-	-	108.4	7, 25, 26
25	1.57	s	-	26	25*	-	28.1	-
26	1.38	S	-	25	26*	-	26.2	-
27a	4.72	d	6.5	27b	27a*	-		
27b	4.69	d	6.6	-	27b*	-	95.4	12, 28
28	3.38	s	-	-	-	-	56.0	27ab
29a	4.72	d	6.6	29b, 29b*	29ba*	-		
29b	4.55	d	6.6	29a	29ab*	-	93.5	16, 17, 30
30	3.44	s	-	-	-	-	56.3	29ab
31	0.97	d	6.8	20	31*	-	21.3	20, 21ab
32a	3.96-3.91	m	-		-	-	64.9	33ab
32b	3.83-3.78	m	-				64.9	33ab
33a	3.96-3.91	m	-	-	-	-	64.9	32ab
33b	3.83-3.78	m	-	-	-	-	64.9	32 ab

NOESY displays fast exchange with major conformer (*).

Figure S-1. MS (ESIpos) analysis of macrocycle $43 \mathrm{~m} / \mathrm{z}=695.3[\mathrm{M}+\mathrm{Na}], m / z=1367.6[2 \mathrm{M}+\mathrm{Na}]$.

Figure S-2. MS-MS-Fragmentation of macrolactone 43 with $m / z=695.3[\mathrm{M}+\mathrm{Na}]$ as the precursor with increasing normalized collision energy (NCE).

$$
\begin{array}{|l|}
\hline \text { precursor: } 695=[672+\mathrm{Na}] \\
\text { isolation: } 695.3+-0.25 \mathrm{~m} / \mathrm{z}
\end{array}
$$

Figure S-3. MS-MS-Fragmentation of macrolactone 43 with $m / z=1367.6[2 \mathrm{M}+\mathrm{Na}]$ as the precursor with increasing normalized collision energy (NCE).

Analytical and spectral data of the epimeric macrolactone $\mathbf{S 2 5}[\alpha]_{\mathrm{D}}^{20}=-7.6\left(\mathrm{c}=0.17, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}$
 ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : see Table S-8; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : see Table S-8; IR (film): $\tilde{v}=2957,2926,2854,1732,1666,1458$, 1379, 1260, 1216, 1152, 1098, 1031, 867, $800 \mathrm{~cm}^{-1}$. MS (ESIpos) m / z (\%): 695.3 (100 ($\mathrm{M}+\mathrm{Na}$)). HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{O}_{12} \mathrm{ClNa}$: 695.2805, found: 695.2809.

Table S-8. NMR data of epimerized macrolactone S25; numbering scheme as shown in the Insert

$\begin{gathered} \text { atom } \\ n^{\circ} \end{gathered}$	${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)					${ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz}$, CDCl_{3})	
	$\boldsymbol{\delta}$ [ppm]	m	\boldsymbol{J} [Hz$]$	COSY	NOESY	$\boldsymbol{\delta}$ [ppm]	HMBC
1	-	-	-	-	-	170.7	-
2	4.40	d	9.0	3	3, 5, 7	80.3	23
3	2.59-2.46	m	-	2, 6	2/6, 4a, 5, 23	39.6	23
4 a	1.89	ddd	12.2, 5.6, 4.8	4b, (5)	3, 4b, 5, (7)	36.1	
4b	1.02-0.98	m	-	3, 4a, 5	2/6, 4a	36.1	23
5	4.06	ddd	13.2, 8.2, 4.7	2/6, 4b	2/6, 4a, 25, (3)	82.6	(7)
6	4.41	dd	8.0, 5.8	5,7	3, 5, 7, 10	82.4	-
7	5.18	td	5.9, 2.4	2/6, 8	2/6, 8, 10, 24	75.8	(9)
8	5.86	ddd	10.9, 5.9, 1.0	7,9	7, 9	129.9	-
9	6.44	td	10.9, 2.4	8,10	8	125.4	-
10	6.78	dd	10.9, 1.0	9	$6,7,13,(28 / 30)$	124.5	-
11	-	-	-	-	-	134.1	12
12	4.19	d	9.5	13	14a, (28/30)	81.4	27ab
13	4.04	ddd	12.0, 9.6, 2.5	12, 14a	2/6, 10	83.8	(12)
14a	1.79	ddd	12.4, 11.6, 3.6	13, (15)	12, 14b, 15, 16	40.0	
14b	1.70-1.64	m	-	14a	14a, 15	40.0	
15	5.78	t	3.7	16	14a, (14b), 16	74.5	-
16	4.26-4.21	m	-	15	$\begin{gathered} 14 a, 15,18,19 \\ 29 a b, 28 / 30 \end{gathered}$	84.3	(17)
17	4.26-4.21	m	-	18	15, 29ab	75.1	29ab
18	5.28	dd	15.5, 6.5	17, 19	16, 20	124.0	(20)
19	5.69	dd	15.5, 7.9	18, (20)	16, (31)	142.0	31
20	2.40	sept	7.0	19, 31	18, 31	33.2	31
21a	1.67	ddd	13.6, 7.8, 4.6	21b, 22	21b, 31		22
21b	1.60-1.56	m	-	21a, 22	21a, 31	40.8	22
22	4.83	dd	5.7, 4.6	(21ab)	21b, (31), 32a, 33a	103.6	(21ab)
23	0.93	d	7.0	3	3, (14b)	14.5	-
24	-	-	-	-	-	108.9	25, 26
25	1.58	S	-	-	5,26	28.8	-
26	1.47	S	-	-	7,25	26.3	-
27a	4.75	d	6.7	27b	12, 28		
27b	4.73	d	6.7	27a	12, 28	95.5	28
28	3.39	s	-	-	27 ab	56.0	27ab
29a	4.70	d	6.5	29b	30		
29b	4.68	d	6.5	29 a	30	94.4	17, 30
30	3.39	S	-	-	29ab	55.4	29ab
31	1.00	d	6.8	20	(18), (19), 20, 21ab	20.5	-
32a	3.96-3.89	m	-		-	64.8	33ab
32b	3.85-3.78	m	-		-	64.8	33ab
33a	3.96-3.91	m	-	-	-	64.8	32ab
33b	3.83-3.78	m				64.8	32ab

Analytical and spectral data of the head-to-tail dilactone S26. $[\alpha]_{\mathrm{D}}^{20}=-47.7 \quad\left(\mathrm{c}=0.39, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, CDCl_{3}, major conformer): see Table S-9. ${ }^{13} \mathrm{C}$ NMR (151 MHz , CDCl_{3}, major conformer, broad signals indicate time-averaged chemical shift): see Table S-9; IR (film): $\tilde{v}=$ 2956, 2927, 2855, 1740, 1462, 1379, 1259, 1214, 1150, 1099, 1029, $835 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESIpos) m / z (\%): 1367.6 (100 $(\mathrm{M}+\mathrm{Na})$) see Figure S-4 -S-6; HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{66} \mathrm{H}_{98} \mathrm{O}_{24} \mathrm{Cl}_{2} \mathrm{Na}: 1367.5717$, found: 1367.5728 .

Table S-9. NMR data of cyclic dimer S26; numbering scheme as shown in the Insert

atom n°	${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)					${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	
	$\boldsymbol{\delta}$ [ppm]	m	\boldsymbol{J} [Hz]	COSY	NOESY	$\boldsymbol{\delta}$ [ppm]	HMBC
1/1'	-	-	-	-	-	171.6	-
2/2'	4.07	d	6.2	3	(23)	83.0	23
$3 / 3$ '	2.25-2.19	m	-	2, (4ab), 23	(4b)	39.6	23
$4 \mathrm{a} / 4 \mathrm{a}^{\prime}$	1.96	ddd	13.4, 7.6, 5.8	3, 4b, 5	-	37.0	2, 23
4b/4b'	1.19-1.16	m	-	(3), 4a, 5	(3)	37.0	2, 23
5/5'	4.19-4.10	m	-	4 ab	-	79.3	2, (4b), (7)
6/6'	4.19-4.10	m	-	7	(25)	81.3	(4b)
7/7'	4.89	ddd	8.6, 6.0, 0.9	6	10, (25)	74.1	9
8/8'	5.66	ddd	11.4, 8.6, 0.9	7,9	9	129.7	(6)
9/9'	6.50	td	11.3, 0.9	8,10	8, (10)	125.8	(7)
10/10'	6.98	d	10.9	9	7	122.5	-
11/11'	-	-	-	-	-	134.1	9
12/12'	4.19-4.10	m	-	-	(26)	81.6	27ab
13/13'	4.19-4.10	m	-	14ab	-	80.8	(12)
14a/14a'	2.13	ddd	14.2, 9.7, 4.1	13, 14b, 15	14b		
14b/14b'	1.91	dd	14.2, 5.6	13, 14a	14a	36.8	-
15/15'	5.33	dd	4.2, 3.1	14a, 16	(16)	75.0	14b, 16
16/16'	3.98	dd	8.5, 2.9	15, 17	(15), (18)	83.6	17
17/17'	4.18	ddd	8.6, 7.5, 0.9	16, 18	16, (29ab)	75.7	$\begin{gathered} 16,18,19 \\ 29 a b \end{gathered}$
18/18 ${ }^{\prime}$	5.26	ddd	15.5, 7.5, 0.9	17, 19	(31)	124.1	17, 20
19/19'	5.64	ddd	15.5, 8.2, 0.6	18, 20	(31)	141.4	$\begin{gathered} 17,20,21 a b, \\ 31 \end{gathered}$
20/20	2.38	sept	7.0	19, 21ab, 31	22,31	33.2	$\begin{gathered} 18,19,21 \mathrm{ab}, \\ 22,31 \end{gathered}$

21a/21a'	1.65 1.59	ddd ddd	$13.8,8.1,4.6$ $13.8,6.2,5.7$	$20,21 b, 22$ $20,21 a, 22$	(31) (31)	40.7	19, (20), 22, 31
21b/21b	1.59	ddd	13.8, 6.2, 5.7	20, 21a, 22	(31)		
22/22'	4.78	dd	5.6, 4.6	21ab	20, 31, 32a, 33a	103.5	$\begin{gathered} 21 a b, 32 a b, \\ 33 a b \end{gathered}$
23/23'	1.18	d	6.8	3	2	19.7	(2)
24/24'	-	-	-	-	-	110.0	25, 26
25/25'	1.54	S	-	-	(26)	27.8	-
26/26'	1.39	s	-	-	(25)	25.4	-
27a/27a'	4.67	d	6.7	-	(12)	94.5	12,28
27b/27b'	4.66	d	6.7	-	(12)	94.5	,
28/28'	3.43	s	-	-	27ab	55.8	$27 a b$
29a/29a'	4.65	d	6.5	29b	30	94.4	
29b/29b ${ }^{\text {c }}$	4.64	d	6.5	29a	30	94.4	17,
30/30'	3.36	s	-	-	29ab	55.5	29ab
31/31'	0.99	d	6.8	20	(18), (19), 20, 22	21.0	19, (20), 21ab
32a/32a'	3.96-3.90	m		32b, 33b		64.8	33ab
32b/32b'	3.84-3.79	m	-	32a, 33a		64.8	33ab
33a/33a'	3.96-3.90	m		32b, 33b		64.8	32ab
33b/33b'	3.84-3.79	m	-	32a, 33a	-	64.8	32ab

Figure S-4: MS (ESIpos) analysis of lactide S26. $m / z=1367.6[\mathrm{M}+\mathrm{Na}], m / z=695.3[\mathrm{M}+2 \mathrm{Na}]$.

Figure S-5. MS-MS-Fragmentation of lactide S26 with $m / z=1367.6[\mathrm{M}+\mathrm{Na}]$ with increasing normalized collision energy (NCE).

$$
\text { precursor: } 1367=[1344+\mathrm{Na}]
$$

isolation: $1367.6+-0.2 \mathrm{~m} / \mathrm{z}$

Figure S-6. MS-MS-Fragmentation of lactide S26 with $m / z=695.3$ [$\mathrm{M}+2 \mathrm{Na}$] with increasing normalized collision energy (NCE).

Putative Chagosensine Methylester (44). $\mathrm{Me}_{2} \mathrm{BBr}\left(0.5 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.30 \mathrm{~mL}, 0.15 \mathrm{mmol}$) was added

dropwise to a solution of macrolactone $43(2.5 \mathrm{mg}, 3.7 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 30 minutes at $-78^{\circ} \mathrm{C}$ the yellow mixture was poured into a solution of pH 7 phosphate buffer (0.15 ml), rinsing the flask with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$. The emulsion was concentrated under reduced pressure to yield the crude aldehyde, which was used in the next step without further purification.

The residue was dissolved in THF (0.20 mL) and $t-\mathrm{BuOH}(0.20 \mathrm{~mL})$ before 2-methyl-2-butene (0.04 $\mathrm{mL}, 0.4 \mathrm{mmol})$ was introduced. A solution of sodium chlorite $(2.7 \mathrm{mg}, 30 \mu \mathrm{~mol})$ and sodium dihydrogenephosphate ($4.3 \mathrm{mg}, 36 \mu \mathrm{~mol}$) in water (0.05 mL) was added at $0{ }^{\circ} \mathrm{C}$ with a glass pipette. After stirring for 30 minutes at $0^{\circ} \mathrm{C}$ the reaction was quenched with sodium thiosulfate pentahydrate ($11.5 \mathrm{mg}, 46 \mathrm{mmol}$). After removing the ice bath, the mixture was stirred for 5 minutes before adding sodium sulfate (390 mg) in small poritons. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, filtered through a short pad of sodium sulfate, rinsing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL in total). The combined filtrates were evaporated under reduced pressure at ambient temperature and the resulting crude acid was used in the next step without further purification.

A freshly prepared solution of diazomethane in diethyl ether (ca. 0.1 mL) was added dropwise to a solution of the crude carboxylic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ at ambient temperature until a yellow colour presisted. After stirring for 5 minutes the yellow solution was quenched with formic acid ($10 \mu \mathrm{~L}$, 0.27 mmol), causing the yellow colour to disappear. After concentrating under reduced pressure at ambient temperatue the residue was purified by preparative HPLC (YMC-ODS-A C18, $5 \mu \mathrm{~m}, 150 \times 30$ $\mathrm{mm}, \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}=30: 70, \mathrm{v}=20 \mathrm{~mL} / \mathrm{min}, \lambda=250 \mathrm{~nm}, 35^{\circ} \mathrm{C}, 95$ bar, t (methyl ester) $=4.53 \mathrm{~min}$) to yield the title compound as a colourless amorphous solid ($0.4 \mathrm{mg}, 20 \%$ over 3 steps) [Conditions for LC-MS: YMC-ODS-A C18, $5 \mu \mathrm{~m}, 150 \times 4.6 \mathrm{~mm}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=40: 60, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=250 \mathrm{~nm}, 35^{\circ} \mathrm{C}$, 153 bar, t (aldehyde) $=10.6 \mathrm{~min}, \mathrm{t}($ carboxylic acid $)=8.6 \mathrm{~min}, \mathrm{t}($ methyl ester $)=25.2 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=$ $+32.5\left(c=0.04, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD} /\left[\mathrm{D}_{5}\right]$-pyridine $1: 1(\mathrm{v} / \mathrm{v})$, referenced on $\left.\mathrm{CD}_{2} \mathrm{HOD}\right)$: see Table S-10; ${ }^{13} \mathrm{C}$ NMR (151 MHz, CD $\mathrm{CD}_{3} \mathrm{OD} /\left[\mathrm{D}_{5}\right]$-pyridine 1:1 (v/v), referenced on $\mathrm{CD}_{2} \mathrm{HOD}$): see Table S 10. IR (film): $\tilde{v}=3386,2958,2922,2852,1736,1455,1259,1095,1063,1039,1010,970,876,799$, $758 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%): 553.2(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{O}_{10} \mathrm{ClNa}$: 553.1811, found: 553.1809.

Table S-10. NMR data of putative chagosensine methyl ester 44; numbering scheme as shown in the Insert

$\begin{gathered} \text { atom } \\ n^{\circ} \end{gathered}$	${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD} /\left[\mathrm{D}_{5}\right]$-pyridine 1:1 (v/v), referenced on $\mathrm{CD}_{2} \mathrm{HOD}$)					${ }^{13}$ C NMR $(151 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{OD} /\left[\mathrm{D}_{5}\right]$-pyridine 1:1)	
	$\boldsymbol{\delta}$ [ppm]	m	$\boldsymbol{J}[\mathrm{Hz}]$	COSY	NOESY	$\boldsymbol{\delta}$ [ppm]	HMBC
1	-	-	-	-	-	171.3	-
2	4.09	d	4.2	(3)	(3), 23	87.1	23
3	2.58-2.50	m	-	2, (4ab)	(2), 4a, 23	36.4	(4ab), 23
4a	2.22	ddd	12.3, 7.5, 7.5	(3), 4b, (5)	3, 4b, 5	38.	
4b	1.35	ddd	12.3, 8.4, 6.0	4a, 5	4b, 6, 23	38.9	23
5	3.77	ddd	8.4, 7.5, 6.5	4ab, 6,	4a, (6), 7, (10), (13)	81.7	(4b), (7)
6	4.02	d	6.5	5	4b, 5, 7	81.8	-
7	4.66	d	8.8	8	(4b), 5, 6, (8), 10	71.5	(6), 9
8	6.07	ddd	11.3, 8.8, 0.9	7,9	(7), 9	137.2	(6), (7), 9, 10
9	6.35	ddd	11.2, 11.2, 1.1	8,10	8	123.6	7
10	6.93	dd	10.9, 0.9	9	(5), 7, 13	123.2	(8), (12)
11	-	-	-	-	-	137.1	9, 10, 12
12	4.32	d	9.0	13	14a	79.5	(10), (13)
13	4.28	ddd	11.5, 9.1, 3.1	12, 14a, (14b)	(4a), (5), 10, 14b	85.5	12, (14a), (15)
14a	1.73	ddd	12.6, 11.4, 3.1	13, 14b, (15)	(12), (15), (16)	39.0	
14b	1.67	ddd	12.8, 3.0, 0.6	(13), 14a	(5), (13), (15)	39.0	
15	5.40	m	-	(14a), 16	(14ab), 16	76.4	(14b)
16	4.20	dd	8.7, 3.7	(15), 17	15, (18)	86.9	(14b), 17
17	4.54	dd	8.7, 6.8	16, 18	(18), 19, (20)	72.1	(16), (18), 19
18	5.55	ddd	15.5, 6.8, 1.1	17, 19	(16), 17, 20, (24)	128.9	(17)
19	5.81	dd	15.5, 7.3, 1.1	18, (20)	17, (24)	138.0	17, (20), 21ab, 24
20	2.58-2.50	m	-	(19), 21ab, 24	(18), (19), 24	34.0	(18), 19, 21ab, 24
21a	2.18	dd	15.1, 7.5	20	(19)	41.8	24
21b	2.15	dd	15.1, 6.9	20	(19), 20, 24	41.8	24
22	-	-	-	-	-	173.2	21ab, 25
23	0.83	d	7.0	3	2, 3	19.5	(2), (3), (4)
24	0.85	d	6.8	20	20, (18), (19)	20.4	21ab
25	3.46	S	-	-	-	51.8	-

Table S-11. Comparison of the ${ }^{1} \mathrm{H}$ NMR data of synthetic 44 with those of chagosensine methyl ester reported in the literature ${ }^{[15]}$

atom number	chagosensine methyl ester	Synthetic 44 ($\mathrm{CD}_{2} \mathrm{HOD}$ as reference)
2	4.38 (d, $\left.J_{(2-3)}=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$	4.09 (d, $\left.J_{(2-3)}=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$
3	2.38 (m, 1 H)	2.58-2.50 (m, 2H)
4a	$2.14\left(\mathrm{dt}, J_{(4 a-4 b)}=11.8, J_{(4 a-3)}=J_{(4 a-5)}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$	2.22 (ddd, $\left.J_{(4 a-4 b)}=12.3, J_{(4 a-3)}=J_{(4 a-5)}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$
4 b	1.96 (m, 1 H)	1.35 (ddd, $\left.J_{(4 b-4 a)}=12.3, J_{(4 b-5)}=8.4, J_{(4 b-3)}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$
5	4.19 (ddd, $\left.J_{(5-4 a)}=6.5, J_{(5-6)}=4.5, J_{(5-4 b)}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$	3.77 (dt, $\left.J_{(5-4 b)}=8.4, J_{(5-4 a)}=7.5, J_{(5-6)}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$
6	4.03 (dd, $\left.J_{(6-7)}=10.0, J_{(6-5)}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$	$4.02\left(\mathrm{~d}, J_{(6-5)}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$
7	$4.31\left(\mathrm{dd}, J_{(7-6)}=10,0, J_{(7-8)}=8,1 \mathrm{~Hz}, 1 \mathrm{H}\right)$	4.66 (d, $\left.J_{(7-8)}=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$
8	5.93 (dd, $\left.J_{(8-9)}=10.9, J_{(8-7)}=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$	6.07 (ddd, $\left.J_{(8-9)}=11.3, J_{(8-7)}=8.8, J_{(8-10)}=0.9 \mathrm{~Hz}, 1 \mathrm{H}\right)$
9	$6.17\left(\mathrm{dd}, J_{(9-8)}=10.9, J_{(9-10)}=7.7 \mathrm{~Hz}, 1 \mathrm{H}\right)$	$\left.6.35{ }^{(\mathrm{ddd},} J_{(9-8)}=J_{(9-10)}=11.2, \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$
10	6.42 (d, $\left.J_{(10-9)}=7.7 \mathrm{~Hz}, 1 \mathrm{H}\right)$	6.93 (dd, $\left.J_{(10-9)}=10.9 \mathrm{~Hz}, J_{(10-8)}=0.9 \mathrm{~Hz}, 1 \mathrm{H}\right)$
12	4.42 (d, $\left.J_{(12-13)}=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$	4.32 (d, $\left.J_{(12-13)}=9.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$
13	4.15 (ddd, $\left.J_{(13-14 b)}=7.8, J_{(13-12)}=3.5, J_{(13-14 a)}=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right)$	4.28 (ddd, $\left.J_{(13-14 a)}=11.5, J_{(13-12)}=9.1, J_{(13-14 b)}=3.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$
14a	2.14 (dt, $\left.J_{(14 a-14 b)}=12.3, J_{(14 a-13)}=J_{(14 a-15)}=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right)$	1.73 (ddd, $\left.J_{(14 a-14 b)}=12.6, J_{(14 a-13)}=11.4, J_{(14 a-15)}=3.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$
14b	1.58 (m, 1 H)	1.67 (ddd, $\left.J_{(14 b-14 a)}=12.8, J_{(14 b-13)}=3.0, J_{(14 b-15)}=0.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$
15	5.08 (ddd, $\left.J_{(15-14 b)}=8.1, J_{(15-16)}=5.9, J_{(15-14 a)}=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right)$	$5.40 *$ (m, 1H)
16	4.20 (dd, $\left.J_{(16-17)}=7.7, J_{(16-15)}=5.9 \mathrm{~Hz}, 1 \mathrm{H}\right)$	$4.20\left(\mathrm{dd}, J_{(16-17)}=8.7, J_{(16-15)}=3.7 \mathrm{~Hz}, 1 \mathrm{H}\right)$
17	$4.52\left(\mathrm{dd}, J_{(17-16)}=7.7, J_{(17-18)}=6.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$	$4.54\left(\mathrm{dd}, J_{(17-16)}=8.7, J_{(17-18)}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$
18	$5.52\left(\mathrm{dd}, J_{(18-19)}=15.0, J_{(18-17)}=6.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$	5.55 (ddd, $\left.J_{(18-19)}=15.5, J_{(18-17)}=6.8, J_{(18-20)}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$
19	$5.71\left(\mathrm{dd}, J_{(19-18)}=15.0, J_{(19-20)}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$	$5.81\left(\mathrm{ddd}, J_{(19-18)}=15.5, J_{(19-20)}=7.3, J_{(19-17)}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$
20	2.75 (m, 1H)	2.58-2.50 (m, 2H)
21a	2.33 (dd, $\left.J_{(21 a-21 b)}=16, J_{(21 a-20)}=5 \mathrm{~Hz}, 1 \mathrm{H}\right)$	2.18 (dd, $\left.J_{(21 a-21 b)}=15.1, J_{(21 a-20)}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$
21b	2.45 (dd, $\left.J_{(21 b-21 a)}=16, J_{(21 b-20)}=10 \mathrm{~Hz}, 1 \mathrm{H}\right)$	2.15 (dd, $\left.J_{(21 b-21 a)}=15.1, J_{(21 b-20)}=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right)$
23	$0.98\left(\mathrm{~d}, J_{(23-3)}=6.6 \mathrm{~Hz}, 3 \mathrm{H}\right)$	0.83 (d, $\left.J_{(23-3)}=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right)$
24	$1.08\left(\mathrm{~d}, J_{(24-20)}=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right)$	$0.85\left(\mathrm{~d}, J_{(24-20)}=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right)$
25	3.67 (s, 3H)	3.58 (s, 3H)

* from COSY, signal underneath water signal

Table S-12. Comparison of the ${ }^{13} \mathrm{C}$ NMR data of synthetic 44 with those of chagosensine methyl ester reported in the literature; ${ }^{[15]}$ color code: $\Delta \delta \leq$ $0.5 \mathrm{ppm} ; 0.5<\Delta \delta<1.0 \mathrm{ppm} ; \Delta \delta \geq 1.0 \mathrm{ppm}$

position	chagosensine methyl ester	44	$\Delta \delta$
1	170.5	171.3	0.8
2	80.8	87.1	6.8
3	36.6	36.4	-0.2
4	38.0	38.9	0.9
5	72.4	81.7	9.3
6	75.5	81.8	6.3
7	72.0	71.5	-0.5
8	133.6	137.2	3.6
9	128.2	123.6	5.4
10	126.9	123.2	-3.7
11	136.2	137.1	0.9
12	61.3	79.5	18.2
13	70.7	85.5	14.8
14	32.9	39.0	6.1
15	72.7	76.4	3.7
16	81.8	86.9	5.1
17	67.2	72.1	4.9
18	128.5	128.9	0.4
19	133.4	138.0	4.6
20	30.4	34.0	3.6
21	40.2	41.8	1.6
22	172.0	173.2	1.2
23	14.8	19.5	4.7
24	19.5	20.4	0.9
25	51.2	51.8	0.6

References:

[1] H. Nöth, H. Vahrenkamp, J. Organomet. Chem. 1968, 11, 399-405.
[2] R. J. Linderman, M. Jaber, B. D. Griedel, J. Org. Chem. 1994, 59, 6499-6500.
[3] D. Seyferth, J. K. Heeren, G. Singh, S. O. Grim, W. B. Hughes, J. Organomet. Chem. 1966, 5, 267-274.
[4] C. Palmer, N. A. Morra, A. C. Stevens, B. Bajtos, B. P. Machin, B. L. Pagenkopf, Org. Lett. 2009, 11, 56145617.
[5] S. Otsuka, Y. Tatsuno, K. Ataka, J. Am. Chem. Soc. 1971, 93, 6705-6706.
[6] D. Haigh, H. C. Birrell, B. C. C. Cantello, D. S. Eggleston, R. C. Haltiwanger, R. M. Hindley, A. Ramaswamy, N. C. Stevens, Tetrahedron: Asymmetry 1999, 10, 1353-1367.
[7] T. Balalas, C. Peperidou, D. J. Hadjipavlou-Litina, K. E. Litinas, Synthesis 2016, 48, 281-292.
[8] N. Huwyler, K. Radkowski, S. M. Rummelt, A. Fürstner, Chem. Eur. J. 2017, 23, 12412-12419.
[9] F. Ngan, M. Toofan, J. Chromat. Sci. 1991, 29, 8-10.
[10] P. Fristrup, T. Jensen, H. Hoppe, P.-O. Norrby, Chem. Eur. J. 2006, 12, 5352-5360.
[11] R. N. Harris, P. Sundararaman, C. Djerassi, J. Am. Chem. Soc. 1983, 105, 2408-2413.
[12] M. Zaghouani, C. Kunz, L. Guédon, F. Blanchard, B. Nay, Chem. Eur. J. 2016, 22, 15257-15260.
[13] Y. Nishikawa, M. Kitajima, H. Takayama, Org. Lett. 2008, 10, 1987-1990.
[14] T. R. Hoye, C. S. Jeffrey, F. Shao, Nat. Protoc. 2007, 2, 2451-2458.
[15] T. Řezanka, L. Hanuš, V. M. Dembitsky, Eur. J. Org. Chem. 2003, 4073-4079.

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	T
160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

180	1																
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

ClMs

| 1 | | | | | | | | | | | | | | | | | | | |
| :--- |
| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | 1 |

1		1	1	1	1		1	1	1	1	,	1	1		1		1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

mace

